Spectral correlation of magnetic and gravity anomalies of Ohio

Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 365-380 ◽  
Author(s):  
Ralph R. B. von Frese ◽  
Michael B. Jones ◽  
Jeong Woo Kim ◽  
Wen Sheng Li

Geologic interpretation of Ohio's magnetic or gravity anomalies is hindered by the effects of anomaly superposition and source ambiguity inherent to potential field analysis. A common approach to minimizing interpretational ambiguities is to consider analyses of anomaly correlations. A spectral procedure is adapted which correlates anomaly fields in the frequency domain to produce filters separating positively and negatively correlated, as well as null correlated features. The correlation filter passes or rejects wavenumbers between coregistered fields based on the correlation coefficient between common wavenumbers as given by the cosine of their phase difference. This procedure is applied to reduced‐to‐pole magnetic and first vertical derivative gravity anomalies of Ohio for mapping correlative magnetization and density contrasts within the basement rocks. The analysis reveals predominantly positive correlations between anomaly maxima and minima. Correlative anomaly maxima may be generally modeled as mafic bodies of the upper crust. They map out a possible dike complex in northwestern Ohio, a batholith as a possible source of volcanic rocks in southwestern Ohio, and numerous mafic bodies related presumably to Keweenawan rifting and Grenville tectonics. Correlative anomaly minima include several isolated features that may define felsic terranes of the upper crust, and ringed features around some of the larger mafic bodies which also may contain significant edge‐effect components. A large circular feature in south‐central Ohio involves correlative minima of a possible anorthosite body that is ringed by an inversely correlative zone of positive density and negative magnetization contrasts. Another prominent negative correlation involves an extensive area of possible extrusive rocks with positive magnetization and negative density contrasts just north of the batholith in southwestern Ohio.

1970 ◽  
Vol 7 (1) ◽  
pp. 156-163 ◽  
Author(s):  
R. A. Gibb ◽  
J. van Boeckel

Gravity surveys of the Timmins–Senneterre mining belt of northeastern Ontario and western Quebec were made by the Dominion Observatory during the period 1946–1964. The Round Lake batholith is one of several composite granitic plutons of the Algoman series which are outlined by intense negative gravity anomalies. The anomaly over the Round Lake batholith can be explained by the large density contrast (0.22 g/cm3) between the granite and surrounding Keewatin volcanic rocks.Two possible models of the batholith are presented which depend on different assumptions as to the composition of the upper crust. The first model involves normal faulting of the batholith to explain the variations in anomaly level within the batholith. In this model the granite is assumed to be homogeneous in density and extends to a maximum depth of 10 km. Alternatively density variations corresponding to a facies change within the pluton may be the major cause of the local internal anomaly variations. In this interpretation the true thickness of the granite cannot be evaluated as the whole region is assumed to be underlain by granite, but the maximum thickness of the surrounding basic volcanic rocks is 5 km.


1993 ◽  
Vol 130 (6) ◽  
pp. 835-846 ◽  
Author(s):  
S. R. Noble ◽  
R. D. Tucker ◽  
T. C. Pharaoh

AbstractThe U-Pb isotope ages and Nd isotope characteristics of asuite of igneous rocks from the basement of eastern England show that Ordovician calc-alkaline igneous rocks are tectonically interleaved with late Precambrian volcanic rocks distinct from Precambrian rocks exposed in southern Britain. New U-Pb ages for the North Creake tuff (zircon, 449±13 Ma), Moorby Microgranite (zircon, 457 ± 20 Ma), and the Nuneaton lamprophyre (zircon and baddeleyite, 442 ± 3 Ma) confirm the presence ofan Ordovician magmatic arc. Tectonically interleaved Precambrian volcanic rocks within this arc are verified by new U-Pb zircon ages for tuffs at Glinton (612 ± 21 Ma) and Orton (616 ± 6 Ma). Initial εNd values for these basement rocks range from +4 to - 6, consistent with generation of both c. 615 Ma and c. 450 Ma groups of rocksin continental arc settings. The U-Pb and Sm-Nd isotope data support arguments for an Ordovician fold/thrust belt extending from England to Belgium, and that the Ordovician calc-alkaline rocks formed in response to subductionof Tornquist Sea oceanic crust beneath Avalonia.


2016 ◽  
Author(s):  
Godfred Osukuku ◽  
Abiud Masinde ◽  
Bernard Adero ◽  
Edmond Wanjala ◽  
John Ego

Abstract This research work attempts to map out the stratigraphic sequence of the Kerio Valley Basin using magnetic, gravity and seismic data sets. Regional gravity data consisting of isotactic, free-air and Bouguer anomaly grids were obtained from the International Gravity Bureau (BGI). Magnetic data sets were sourced from the Earth Magnetic Anomaly grid (EMAG2). The seismic reflection data was acquired in 1989 using a vibrating source shot into inline geophones. Gravity Isostacy data shows low gravity anomalies that depict a deeper basement. Magnetic tilt and seismic profiles show sediment thickness of 2.5-3.5 Km above the basement. The Kerio Valley Basin towards the western side is underlain by a deeper basement which are overlain by succession of sandstones/shales and volcanoes. At the very top are the mid Miocene phonolites (Uasin Gishu) underlain by mid Miocene sandstones/shales (Tambach Formation). There are high gravity anomalies in the western and southern parts of the basin with the sedimentation being constrained by two normal faults. The Kerio Valley Basin is bounded to the west by the North-South easterly dipping fault system. Gravity data was significantly of help in delineating the basement, scanning the lithosphere and the upper mantle according to the relative densities. The basement rocks as well as the upper cover of volcanoes have distinctively higher densities than the infilled sedimentary sections within the basin. From the seismic profiles, the frequency of the shaley rocks and compact sandstones increases with depths. The western side of the basin is characterized by the absence of reflections and relatively higher frequency content. The termination of reflectors and the westward dip of reflectors represent a fault (Elgeyo fault). The reflectors dip towards the west, marking the basin as an asymmetrical syncline, indicating that the extension was towards the east. The basin floor is characterized by a nearly vertical fault which runs parallel to the Elgeyo fault. The seismic reflectors show marked discontinuities which may be due to lava flows. The deepest reflector shows deep sedimentation in the basin and is in reasonable agreement with basement depths delineated from potential methods (gravity and magnetic). Basement rocks are deeper at the top of the uplift footwall of the Elgeyo Escarpment. The sediments are likely of a thickness of about 800 M which is an interbed of sandstones and shales above the basement.


1963 ◽  
Vol S7-V (2) ◽  
pp. 218-231 ◽  
Author(s):  
Jean Louis Cheminee ◽  
Daniel Nordemann

Abstract Fifty samples of volcanic rocks from south-central France, ranging from basalts to rhyolites, were subjected to gamma spectrometry analysis for the purpose of determining the proportions and relationships of the constituent radioactive elements. Zircon, sphene and apatite generally contained less thorium and uranium than the less abundant accessory minerals such as allanite, monazite and xenotime. Results of the analysis also show that the percentage of radioactive minerals is greater in the acidic lavas than in the intrusive rocks, suggesting that the latter were subjected to hydrothermal alteration. The percentage of potassium varies in direct proportion to the variation in the percentage of silica. The increase in thorium as a function of silica is more rapid than that of uranium. Graphically, no correlation exists between the percentage of radium and silica. The concentrations of uranium and thorium do not vary independently but seem to have a statistical dependence whose functional relations are not yet apparent.


2019 ◽  
Author(s):  
Thomas M. Belgrano ◽  
Larryn W. Diamond ◽  
Yves Vogt ◽  
Andrea R. Biedermann ◽  
Samuel A. Gilgen ◽  
...  

Abstract. Recent studies have revealed genetic similarities between Tethyan ophiolites and oceanic proto-arc sequences formed above nascent subduction zones. The Semail ophiolite (Oman–U.A.E.) in particular can be viewed as an analogue for this proto-arc crust. Though proto-arc magmatism and the mechanisms of subduction-initiation are of great interest, insight is difficult to gain from drilling and limited surface outcrops in submarine fore-arcs. In contrast, the Semail ophiolite, in which the 3–5 km thick upper-crustal succession is exposed in an oblique cross-section, presents an opportunity to assess the architecture and volumes of different volcanic rocks that form during the protoarc stage. To determine the distribution of the volcanic rocks and to aid exploration for the volcanogenic massive sulphide (VMS) deposits that they host, we have re-mapped the volcanic units of the Semail ophiolite by integrating new field observations, geochemical analyses and geophysical interpretations with pre-existing geological maps. By linking the major element compositions of the volcanic units to rock magnetic properties, we were able to use aeromagnetic data to infer the extension of each outcropping unit below sedimentary cover, resulting in in a new map showing 2100 km2 of upper-crustal bedrock. Whereas earlier maps distinguished two main volcanostratigraphic units, we have distinguished four, recording the progression from early spreading-axis basalts (Geotimes) through to axial to off-axial depleted basalts (Lasail), to post-axial tholeiites (Tholeiitic Alley) and finally boninites (Boninitic Alley). Geotimes (Phase 1) axial dykes and lavas make up ~55 vol% of the Semail upper crust, whereas post-axial (Phase 2) lavas constitute the remaining ~ 45 vol % and ubiquitously cover the underlying axial crust. The Semail boninites occur as discontinuous accumulations up to 2 km thick at the top of the sequence and constitute ~ 15 vol % of the upper crust. The new map provides a basis for targeted exploration of the gold-bearing VMS deposits hosted by these boninites. The thickest boninite accumulations occur in the Fizh block, where magma ascent occurred along crustal-scale faults that are connected to shear zones in the underlying mantle rocks, which in turn are associated with economic chromitite deposits. Locating major boninite feeder zones may thus be an indirect means to explore for chromitites in the underlying mantle.


1983 ◽  
Vol 20 (9) ◽  
pp. 1355-1373 ◽  
Author(s):  
Erich Dimroth ◽  
Lazlo Imreh ◽  
Normand Goulet ◽  
Michel Rocheleau

In this paper, we describe the relations between the paleogeographic and tectonic evolution of the southwestern part of the Archean Abitibi and Bellecombe belts. Volcanism in the Abitibi Belt created a very thick, anisotropic plate composed of competent volcanic rocks and broken by the Duparquet–Destor break. The depocenters of the upper division of diverse volcanic rocks subsided about 10 km relative to their surroundings, and some central volcanic complexes within this division were consolidated by synvolcanic plutons and their thermal metamorphic aureole. The Cadillac break, a normal fault, separated the Abitibi and Bellecombe belts. The latter consisted of comparatively incompetent sedimentary rocks on top of a basement composed of ultramafic–mafic flows.North–south compression of the volcanic terrain during the Kenoran Orogeny produced a set of flexure folds, F1, that curve around the consolidated cores of central volcanic complexes generally in an easterly direction. Synclinoria nucleated at the deeply subsident depocenters of the upper diverse division. Further north–south flattening and subvertical stretching produced the east-trending F2 folds, their axial-plane schistosity S2, and local superposed schistosities S3 and S4. Southward verging recumbent folds suggest that the Bellecombe Belt simultaneously was pulled northward below the Abitibi Belt. During the orogeny, the Duparquet–Destor and Cadillac breaks were transformed to thrust faults; the Duparquet–Destor break also shows minor (< 3 km) right-lateral strike slip. Diapiric rise of late- to post-kinematic plutons locally distorted earlier schistosities.


1981 ◽  
Vol 18 (8) ◽  
pp. 1310-1319 ◽  
Author(s):  
Wm. H. Mathews

Unmetamorphosed Early Eocene sediments and volcanic rocks of the Trinity Hills and Enderby Cliffs yield K–Ar dates of 42–49 Ma. These overlie high-grade gneisses yielding K–Ar ages on biotites, muscovites, and hornblende ranging from 47 to 60 Ma. The Eocene sediments and volcanics rest nearby on low-grade phyllites, greenstones, and schists yielding dates from 83 to 155 Ma. The gneiss dates are regarded as reset by some Late Cretaceous to earliest Cenozoic thermal event that did not affect, at least to the same degree, the nearby less metamorphosed basement rocks. A thermal history has been constructed to account for the decreasing apparent ages of biotite (assumed blocking temperature of 250 °C) with increasing depth below the sub-Eocene unconformity, for the greater ages of hornblende and muscovite in the same rocks (blocking temperatures of 500 and 350 °C), as well as for thermal changes associated with high vitrinite reflectance from coal at one site in the covering sediments. Very rapid stripping (something like 5 km in 12 Ma) is inferred for the areas of reset gneisses, but not for the schist areas, in early Cenozoic time.


1987 ◽  
Vol 24 (4) ◽  
pp. 813-825 ◽  
Author(s):  
Ronald Doig

The Churchill Province north of the Proterozoic Cape Smith volcanic fold belt of Quebec may be divided into two parts. The first is a broad antiform of migmatitic gneisses (Deception gneisses) extending north from the fold belt ~50 km to Sugluk Inlet. The second is a 20 km wide zone of high-grade metasedimentary rocks northwest of Sugluk Inlet. The Deception gneisses yield Rb–Sr isochron ages of 2600–2900 Ma and initial ratios of 0.701–0.703, showing that they are Archean basement to the Cape Smith Belt. The evidence that the basement rocks have been isoclinally refolded in the Proterozoic is clear at the contact with the fold belt. However, the gneisses also contain ubiquitous synclinal keels of metasiltstone with minor metapelite and marble that give isochron ages less than 2150 Ma. These ages, combined with low initial ratios of 0.7036, show that they are not part of the basement, as the average 87Sr/86Sr ratio for the basement rocks was about 0.718 at that time.The rocks west of Sugluk Inlet consist mainly of quartzo-feldspathic sediments, quartzites, para-amphibolites, marbles, and some pelite and iron formation. In contrast to the Proterozoic sediments in the Deception gneisses, these rocks yield dates of 3000–3200 Ma, with high initial ratios of 0.707–0.714. These initial ratios point to an age (or a provenance) much greater than that of the Archean Deception gneisses. The rocks of the Sugluk terrain are intruded by highly deformed sills of granitic rocks with ages of about 1830 Ma, demonstrating again the extent and severity of the Proterozoic overprint. The eastern margin of this possibly early Archean Sugluk block is a discontinuity in age, lithology, and geophysical character that could be a suture between two Archean cratons. It is not known if such a suturing event is of Archean age, or if it is related to the deformation of the Cape Smith Fold Belt.Models of evolution incorporating both the Cape Smith Belt and the Archean rocks to the north need to account for the internal structure of the fold belt, the continental affinity of many of the volcanic rocks, the continuity of basement around the eastern end of the belt, and the increase in metamorphism through the northern part of the belt into a broad area to the north. The Cape Smith volcanic rocks may have been extruded along a continental rift, parallel to a continental margin at Sugluk. Continental collison at Sugluk would have thrust the older and higher grade Sugluk rocks over the Deception gneisses, produced the broad Deception antiform, and displaced the Cape Smith rocks to the south in a series of north-dipping thrust slices.


1999 ◽  
Vol 36 (2) ◽  
pp. 209-225 ◽  
Author(s):  
Ralf O Maxeiner ◽  
Tom II Sibbald ◽  
William L Slimmon ◽  
Larry M Heaman ◽  
Brian R Watters

This paper describes the geology, geochemistry, and age of two amphibolite facies volcano-plutonic assemblages in the southern Hanson Lake Block and southeastern Glennie Domain of the Paleoproterozoic Trans-Hudson Orogen of east-central Saskatchewan. The Hanson Lake assemblage comprises a mixed suite of subaqueous to subaerial dacitic to rhyolitic (ca. 1875 Ma) and intercalated minor mafic volcanic rocks, overlain by greywackes. Similarly with modern oceanic island arcs, the Hanson Lake assemblage shows evolution from primitive arc tholeiites to evolved calc-alkaline arc rocks. It is intruded by younger subvolcanic alkaline porphyries (ca. 1861 Ma), synvolcanic granitic plutons (ca. 1873 Ma), and the younger Hanson Lake Pluton (ca. 1844 Ma). Rocks of the Northern Lights assemblage are stratigraphically equivalent to the lower portion of the Hanson Lake assemblage and comprise tholeiitic arc pillowed mafic flows and felsic to intermediate volcaniclastic rocks and greywackes, which can be traced as far west as Wapawekka Lake in the south-central part of the Glennie Domain. The Hanson Lake volcanic belt, comprising the Northern Lights and Hanson Lake assemblages, shows strong lithological, geochemical, and geochronological similarities to lithotectonic assemblages of the Flin Flon Domain (Amisk Collage), suggesting that all of these areas may have been part of a more or less continuous island arc complex, extending from Snow Lake to Flin Flon, across the Sturgeon-Weir shear zone into the Hanson Lake Block and across the Tabbernor fault zone into the Glennie Domain.


Sign in / Sign up

Export Citation Format

Share Document