Pore pressure estimation in reservoir rocks from seismic reflection data

Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1569-1579 ◽  
Author(s):  
José M. Carcione ◽  
Hans B. Helle ◽  
Nam H. Pham ◽  
Tommy Toverud

A method is used to obtain pore pressure in shaly sandstones based upon an acoustic model for seismic velocity versus clay content and effective pressure. Calibration of the model requires log data—porosity, clay content, and sonic velocities—to obtain the dry‐rock moduli and the effective stress coefficients as a function of depth and pore pressure. The seismic P‐wave velocity, derived from reflection tomography, is fitted to the theoretical velocity by using pore pressure as the fitting parameter. This approach, based on a rock‐physics model, is an improvement over existing pore‐pressure prediction methods, which mainly rely on empirical relations between velocity and pressure. The method is applied to the Tune field in the Viking Graben sedimentary basin of the North Sea. We have obtained a high‐resolution velocity map that reveals the sensitivity to pore pressure and fluid saturation in the Tarbert reservoir. The velocity map of the Tarbert reservoir and the inverted pressure distribution agree with the structural features of the Tarbert Formation and its known pressure compartments.

2020 ◽  
Author(s):  
Bastien Dupuy ◽  
Anouar Romdhane ◽  
Peder Eliasson

<p>CO<sub>2</sub> storage operators are required to monitor storage safety during injection with a long-term perspective (Ringrose and Meckel, 2019), implying that efficient measurement, monitoring and verification (MMV) plans are of critical importance for the viability of such projects. MMV plans usually include containment, conformance and contingency monitoring. Conformance monitoring is carried out to verify that observations from monitoring data are consistent with predictions from prior reservoir modelling within a given uncertainty range. Quantitative estimates of relevant reservoir parameters (e.g. pore pressure and fluid saturations) are usually derived from geophysical monitoring data (e.g. seismic, electromagnetic and/or gravity data) and potential prior knowledge of the storage reservoir.</p><p>In this work, we describe and apply a two-step strategy combining geophysical and rock physics inversions for quantitative CO<sub>2</sub> monitoring. Bayesian formulations are used to propagate and account for uncertainties in both steps (Dupuy et al., 2017). We apply our workflow to data from the Sleipner CO<sub>2</sub> storage project, located offshore Norway. At Sleipner, the CO<sub>2</sub> has been injected at approx. 1000 m deep, in the high porosity, high permeability Utsira aquifer sandstone since 1996 with an approximate rate of 1 million tonnes per year. We combine seismic full waveform inversion and rock physics inversion to show that 2D spatial distribution of CO<sub>2</sub> saturation can be obtained. Appropriate and calibrated rock physics models need to take into account the way fluid phases are mixed together (uniform to patchy mixing) and the trade-off effects between pore pressure and fluid saturation. For the Sleipner case, we show that the pore pressure build-up can be neglected and that the derived CO<sub>2</sub> saturation distributions mainly depend on P-wave velocities and on the rock physics model. The CO<sub>2</sub> saturation is larger at the top of the reservoir and the mixing tends to be more uniform. These mixing properties are, however, one of the main uncertainties in the inversion. We discuss the added value of a joint rock physics inversion approach, where multi-physics (electromagnetic, seismic, gravimetry), and multi-parameter inversion can be used to reduce the under-determination of the inverse problem and to better discriminate pressure, saturation, and fluid mixing effects.</p><p>Acknowledgements:</p><p>This publication has been produced with support from the NCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: Aker Solutions, Ansaldo Energia, CoorsTek Membrane Sciences, Emgs, Equinor, Gassco, Krohne, Larvik Shipping, Lundin, Norcem, Norwegian Oil and Gas, Quad Geometrics, Total, Vår Energi, and the Research Council of Norway (257579/E20).</p><p>References:</p><p>Dupuy, B., Romdhane, A., Eliasson, P., Querendez, E., Yan, H., Torres, V. A., and Ghaderi, A. (2017). Quantitative seismic characterization of CO<sub>2</sub> at the Sleipner storage site, North Sea. Interpretation, 5(4):SS23–SS42.</p><p>Ringrose, P. S. and Meckel, T. A. (2019). Maturing global CO<sub>2</sub> storage resources on offshore continental margins to achieve 2DS emissions reductions. Scientific Reports, 9(1):1–10.</p>


Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. R45-R56 ◽  
Author(s):  
Lars Nielsen ◽  
Hans Thybo ◽  
Martin Glendrup

Seismic wide-angle data were recorded to more than 300-km offset from powerful airgun sources during the MONA LISA experiments in 1993 and 1995 to determine the seismic-velocity structure of the crust and uppermost mantle along three lines in the southeastern North Sea with a total length of 850 km. We use the first arrivals observed out to an offset of 90 km to obtain high-resolution models of the velocity structure of the sedimentary layers and the upper part of the crystalline crust. Seismic tomographic traveltime inversion reveals 2–8-km-thick Paleozoic sedimentary sequences with P-wave velocities of 4.5–5.2 km/s. These sedimentary rocks are situated below a Mesozoic-Cenozoic sequence with variable thickness: ∼2–3 km on the basement highs, ∼2–4 km in the Horn Graben and the North German Basin, and ∼6–7 km in the Central Graben. The thicknesses of the Paleozoic sedimentary sequences are ∼3–5 km in the Central Graben, more than 4 km in the Horn Graben, up to ∼4 km on the basement highs, and up to 8 km in the North German Basin. The Paleozoic strata are clearly separated from the shallower and younger sequences with velocities of ∼1.8–3.8 km/s and the deeper crystalline crust with velocities of more than 5.8–6.0 km/s in the tomographic P-wave velocity model. Resolution tests show that the existence of the Paleozoic sediments is well constrained by the data. Hence, our wide-angle seismic models document the presence of Paleozoic sediments throughout the southeastern North Sea, both in the graben structures and in deep basins on the basement highs.


2021 ◽  
Vol 40 (10) ◽  
pp. 716-722
Author(s):  
Yangjun (Kevin) Liu ◽  
Michelle Ellis ◽  
Mohamed El-Toukhy ◽  
Jonathan Hernandez

We present a basin-wide rock-physics analysis of reservoir rocks and fluid properties in Campeche Basin. Reservoir data from discovery wells are analyzed in terms of their relationship between P-wave velocity, density, porosity, clay content, Poisson's ratio (PR), and P-impedance (IP). The fluid properties are computed by using in-situ pressure, temperature, American Petroleum Institute gravity, gas-oil ratio, and volume of gas, oil, and water. Oil- and gas-saturated reservoir sands show strong PR anomalies compared to modeled water sand at equivalent depth. This suggests that PR anomalies can be used as a direct hydrocarbon indicator in the Tertiary sands in Campeche Basin. However, false PR anomalies due to residual gas or oil exist and compose about 30% of the total anomalies. The impact of fluid properties on IP and PR is calibrated using more than 30 discovery wells. These calibrated relationships between fluid properties and PR can be used to guide or constrain amplitude variation with offset inversion for better pore fluid discrimination.


2014 ◽  
Vol 6 (1) ◽  
pp. 559-598
Author(s):  
M. Dec ◽  
M. Malinowski ◽  
E. Perchuc

Abstract. In this article we present a new 1-D P wave seismic velocity model (called MP1-SUW) of the upper mantle structure beneath the western rim of the East European Craton (EEC) based on the analysis of the earthquakes recorded at the Suwałki (SUW) seismic station located in NE Poland which belongs to the Polish Seismological Network (PLSN). This analysis was carried out due to the fact that in the wavefield recorded at this station we observed a group of reflected waves after expected P410P at epicentral distances 2300–2800 km from SUW station. Although the existing global models represent the first arrivals, they do not represent the full wavefield with all reflected waves because they do not take into account the structural features occurring regionally such as 300 km discontinuity. We perform P wave traveltime analysis using 1-D forward ray-tracing modelling for the distances up to 3000 km. We analysed 249 natural seismic events that were divided into four azimuthal spans with epicentres in the western Mediterranean Sea region (WMSR), the Greece and Turkey region (GTR), the Caucasus region (CR) and the part of the North Atlantic Ridge near the January Mayen Island (JMR). Events from each group were sorted into four seismic sections respectively. The MP1-SUW model documents bottom of the asthenospheric low velocity zone (LVZ) at the depth of 220 km, 335 km discontinuity and the zone with the reduction of P wave velocity atop 410 km discontinuity which is depressed to 440 km depth. The nature of a regionally occurring 300 km boundary here we explained by tracing the ancient subduction regime related to the closure of the Iapetus Ocean, the Rheic Ocean and the Tornquist Sea.


2021 ◽  
pp. 1-47
Author(s):  
Chao Li ◽  
Peng Hu ◽  
Jing Ba ◽  
José M. Carcione ◽  
Tianwen Hu ◽  
...  

Tight-gas sandstone reservoirs of the Ordos Basin of China are characterized by high rock-fragment content, dissimilar pore types and a random distribution of fluids, leading to strong local heterogeneity. We model the seismic properties of these sandstones with the double-double porosity (DDP) theory, which considers water saturation, porosity and the frame characteristics. A generalized seismic wavelet is used to fit the real wavelet and the peak frequency-shift method is combined with the generalized S-transform to estimate attenuation. Then, we establish rock-physics templates (RPTs) based on P-wave attenuation and impedance. We use the log data and related seismic traces to calibrate the RPTs and generate a 3D volume of rock-physics attributes for the quantitative prediction of saturation and porosity. The predicted values are in good agreement with the actual gas production reports, indicating that the method can be effectively applied to heterogeneous tight-gas sandstone reservoirs.


2009 ◽  
Vol 12 (03) ◽  
pp. 408-418 ◽  
Author(s):  
Adrian White ◽  
Brett McIntyre ◽  
David Castillo ◽  
Julie Trotta ◽  
Marian Magee ◽  
...  

Summary A post-mortem analysis of the Gnu-1 well was conducted to help us to understand drilling experiences in the context of the pore-pressure and stress profiles. The post-mortem involved a review of the drilling experiences and an analysis of CAST image data, wireline-log data, and the logging-while-drilling (LWD) logs. This information was used to refine and verify a geomechanical model (in-situ stress, pore pressure, and rock-mechanical properties) in the vicinity of the Gnu-1 well. Of prime concern was the verification of the predrill pore-pressure prediction previously undertaken using 3D-seismic-velocity data and offset-well data. Wellbore-failure and natural-fracture analyses were integral parts of the post-mortem. Wellbore breakouts seen in the image data allowed the pore pressure in the 8.5-in. hole section of Well Gnu-1 to be constrained. Modeling using image data collected in the Athol formation indicates that the pore pressure does not increase as rapidly as was estimated in the predrill study. Pore pressures in the North Rankin formation and below were consistent with the predrill study. The geomechanical model was able to explain the losses seen in the Athol formation in Well Gnu-1 when using the mud weights experienced by the open hole at the time of drilling. Introduction The Gnu prospect is situated in the northern portion of Block WA-209-P in the Dampier subbasin, Australian northwest shelf (Fig. 1). The prospect is located within the Reindeer gas field. A number of offset wells exist in the region, the closest wells being Well Reindeer-1 (approximately 1.5 km to the northeast) and Well Caribou-1 (2 km to the southeast). Well Gnu-1 was designed as an exploration well. The anticipated overburden stratigraphy at the location of Well Gnu-1 consists of Tertiary and Upper Cretaceous carbonates, marls and siltstones that overlie Cretaceous claystones, siltstones and minor sandstones, and greensands. The primary aim was to drill vertically to intersect the Muderongia australis glauconitic sandstone and then to build angle and continue drilling a deviated hole through the main Reindeer field gas appraisal within the Legendre formation and into the North Rankin, Brigadier, and Mungaroo formations.


Geophysics ◽  
2005 ◽  
Vol 70 (3) ◽  
pp. O1-O11 ◽  
Author(s):  
Alexey Stovas ◽  
Martin Landrø

We investigate how seismic anisotropy influences our ability to distinguish between various production-related effects from time-lapse seismic data. Based on rock physics models and ultrasonic core measurements, we estimate variations in PP and PS reflectivity at the top reservoir interface for fluid saturation and pore pressure changes. The tested scenarios include isotropic shale, weak anisotropic shale, and highly anisotropic shale layers overlaying either an isotropic reservoir sand layer or a weak anisotropic sand layer. We find that, for transverse isotropic media with a vertical symmetry axis (TIV), the effect of weak anisotropy in the cap rock does not lead to significant errors in, for instance, the simultaneous determination of pore-pressure and fluid-saturation changes. On the other hand, changes in seismic anisotropy within the reservoir rock (caused by, for instance, increased fracturing) might be detectable from time-lapse seismic data. A new method using exact expressions for PP and PS reflectivity, including TIV anisotropy, is used to determine pressure and saturation changes over production time. This method is assumed to be more accurate than previous methods.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. D175-D185 ◽  
Author(s):  
Hamid Adesokan ◽  
Yuefeng Sun

Knowledge of the clay content in clastic reservoirs is important for predicting reservoir quality and properties. We used a microgeometrical model for shaly sand and sandy shale to define the critical-clay-volume fraction and explain the dependence of the bulk modulus on clay content. We found that the concept of the pore-aspect ratio relating to the critical-clay-volume fraction was important to interpret the elastic behavior of shaly sandstone. An abrupt decrease in pore-aspect ratio from about 0.23 to about 0.04 was observed where the clay-volume fraction was greater than the critical value of 32% for the studied data set. At the critical-clay-volume fraction of 32%, an increase in pore compressibility also occurred from about 0.6 to about [Formula: see text]. Results revealed that the microgeometrical model compared to other models can better explain the existence of highly scattered compressional velocity-porosity crossplots when the clay content is close to the critical amount. We discovered that the model can be applied in well-logging interpretations of shaly formations for determining shale cut-off and mapping of reservoir pore shape from velocity measurements.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. ID19-ID34
Author(s):  
Anshuman Pradhan ◽  
Nader C. Dutta ◽  
Huy Q. Le ◽  
Biondo Biondi ◽  
Tapan Mukerji

We have introduced a methodology for quantifying seismic velocity and pore-pressure uncertainty that incorporates information regarding the geologic history of a basin, rock physics, well log, drilling, and seismic data. In particular, our approach relies on linking velocity models to the basin modeling outputs of porosity, mineral volume fractions, and pore pressure through rock-physics models. We account for geologic uncertainty by defining prior probability distributions on lithology-specific porosity compaction model parameters, permeability-porosity model parameters, and heat-flow boundary condition. Monte Carlo basin simulations are performed by sampling the prior uncertainty space. We perform probabilistic calibration of the basin model outputs by defining data likelihood distributions to represent well data uncertainty. Rock physics modeling transforms the basin modeling outputs to give us multiple velocity realizations used to perform multiple depth migrations. We have developed an approximate Bayesian inference framework that uses migration velocity analysis in conjunction with well data for updating velocity and basin modeling uncertainty. We apply our methodology in 2D to a real field case from the Gulf of Mexico; our methodology allows for building a geologic and physical model space for velocity and pore-pressure prediction with reduced uncertainty.


Sign in / Sign up

Export Citation Format

Share Document