Fast location of seismicity: A migration-type approach with application to hydraulic-fracturing data
We propose a new approach for the location of seismic sources using a technique inspired by Gaussian-beam migration of three-component data. This approach requires only the preliminary picking of time intervals around a detected event and is much less sensitive to the picking precision than standard location procedures. Furthermore, this approach is characterized by a high degree of automation. The polarization information of three-component data is estimated and used to perform initial-value ray tracing. By weighting the energy of the signal using Gaussian beams around these rays, the stacking is restricted to physically relevant regions only. Event locations correspond to regions of maximum energy in the resulting image. We have successfully applied the method to synthetic data examples with 20%–30% white noise and to real data of a hydraulic-fracturing experiment, where events with comparatively small magnitudes [Formula: see text] were recorded.