Seismic reflection profiling of the Pyhäsalmi VHMS-deposit: A complementary approach to the deep base metal exploration in Finland

Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. WC15-WC23 ◽  
Author(s):  
Suvi Heinonen ◽  
Marcello Imaña ◽  
David B. Snyder ◽  
Ilmo T. Kukkonen ◽  
Pekka J. Heikkinen

In the Pyhäsalmi case study, the seismic data is used in direct targeting of shallowly dipping mineralized zones in a massive sulfide ore system that was deformed in complex fold interference structures under high-grade metamorphic conditions. The Pyhäsalmi volcanic-hosted massive sulfide (VHMS) deposit ([Formula: see text]) is located in a Proterozoic volcanic belt in central Finland. Acoustic impedance of Pyhäsalmi ore ([Formula: see text]) is distinct from the host rocks ([Formula: see text]), enabling its detection with seismic reflection methods. Drill-hole logging further indicates that the seismic imaging of a contact zone between mafic and felsic volcanic rocks possibly hosting additional mineralizations is plausible. Six seismic profiles showed discontinuous reflectors and complicated reflectivity patterns due to the complex geology. The most prominent reflective package at 1–2 km depth was produced by shallowly dipping contacts between interlayered felsic and mafic volcanic rocks. The topmost of these bright reflections coincides with high-grade zinc mineralization. Large acoustic impedances associated with the sulfide minerals locally enhanced the reflectivity of this topmost contact zone which could be mapped over a wide area using the seismic data. Seismic data enables extrapolation of the geologic model to where no drill-hole data exists; thus, seismic reflection profiling is an important method for defining new areas of interest for deep exploration.

2011 ◽  
Vol 48 (6) ◽  
pp. 1021-1037 ◽  
Author(s):  
A.J. Calvert ◽  
N.E. Hayward ◽  
J.E. Spratt ◽  
J.A. Craven

In 2008, a Vibroseis seismic reflection survey was acquired by Geoscience BC across the eastern part of the volcanic-covered Nechako basin in central British Columbia, where Cretaceous sedimentary rocks have been exhumed along a NNW trend. Good signal penetration through the volcanic cover is indicated by lower crustal reflections at 8–12 s, which were recorded by the entire seismic survey. Comparison of the 2008 seismic survey with data from a previous survey indicates that the lack of reflectivity in the earlier surveys is generally representative of the subsurface geology. The seismic data show that ∼1700 and ∼2900 m thick sub-basins are present at the northern and southern ends of this trend, but the intervening Cretaceous rocks are discontinuous and relatively thin. The creation of a passive-roof duplex by Campanian or later low-angle thrusting is inferred within the thickest Cretaceous strata, but elsewhere faulting is likely related to Eocene extension or transtension. Seismic reflections are also recorded from folded volcanic stratigraphy, the base of the surface volcanic rocks, an underlying volcaniclastic stratigraphy, and intrusions projecting into a Quaternary volcanic cone. Seismic interpretation is complemented by coincident audiofrequency magnetotelluric surveys, from which faulting is inferred at offsets in a regional conductor. No regionally extensive stratigraphy can be identified within the seismic data, and the central Nechako basin appears to be a complex network of small, deformed sub-basins, rather than a single large basin.


Author(s):  
Shelby Brandon Austin-Fafard ◽  
Michelle DeWolfe ◽  
Camille Partin ◽  
Bernadette Knox

Neoarchean volcanic rocks of the Beaulieu River volcanic belt structurally overlie basement rocks of the Sleepy Dragon Complex (ca. 2.85 Ga), approximately 100 km east northeast of Yellowknife. The volcanic belt is comprised of complex lithofacies, including basalt, andesite, rhyolite, and associated volcaniclastic rocks, and hosts the Sunrise volcanogenic massive sulfide deposit. The absolute age of the volcanic strata is not known, nor is the stratigraphy well-defined; therefore, the Beaulieu River volcanic belt cannot be easily correlated to other greenstone belts within the Slave craton. The main objective of this study is to document the litho- and chemo-stratigraphy of the volcanic rocks, and particularly the rhyolite dome, located at the south end  of Sunset Lake to reconstruct their volcanic and petrogenetic evolution, and determine their relationship to the volcanic strata that hosts the Sunrise VMS deposit, located ~6km to the north of the study area. Detailed mapping (1:2000) was completed over two field seasons (2018 and 2019) and shows that the volcanic rocks in the south Sunset Lake area comprise a complex stratigraphy consisting of basaltic, andesitic and rhyolitic lithofacies. This includes massive to pillow basalt and andesite, with lesser amounts of massive to in-situ brecciated, weakly quartz-plagioclase porphyritic rhyolite, heterolithic tuff to lapilli- tuff and felsic tuff to tuff breccia. The felsic clasts within the felsic volcaniclastic rocks are similar in composition to the coherent rhyolite. Units have a trace element geochemical signatures that vary from tholeiitic to calc-alkaline, arc-like rocks. Volumetrically, the volcanic strata in the south Sunset Lake area has a significant amount of volcaniclastic rocks, ranging from tuff to tuff breccia units. The volcaniclastic rocks are interpreted to have been deposited by a series of debris flows and eruption-fed density currents. The stratigraphy of the volcanic rocks in south Sunset Lake is very similar to that of the stratigraphy that hosts the Sunrise VMS deposit. Evidence of a vent proximal environment (e.g. rhyolite dome, peperite, syn-volcanic intrusions) and porous, volcanic debris accumulating on the seafloor highlight conditions favourable for volcanogenic massive sulfide-type mineralization in the south Sunset Lake area.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. WC213-WC222 ◽  
Author(s):  
I. T. Kukkonen ◽  
S. Heinonen ◽  
P. Heikkinen ◽  
P. Sorjonen-Ward

Seismic reflection data was applied to a study of the upper crustal structures in the Outokumpu mining and exploration area in eastern Finland. The Cu-Co-Zn sulfide ore deposits of the Outokumpu area are hosted by Palaeoproterozoic ophiolite-derived altered ultrabasic rocks (serpentinite, skarn rock, and quartz rock) and black schist within turbiditic mica schist. Mining in the Outokumpu area has produced a total of 36 Mt of ore from three historical and one active mine. Seismic data comprises 2D vibroseis data surveyed along a network of local roads. The seismic sections provide a comprehensive 3D view of the reflective structures. Acoustic rock properties from downhole logging and synthetic seismograms indicate that the strongly reflective packages shown in the seismic data can be identified as the host-rock environments of the deposits. Reflectors show excellent continuity along the structural grain of the ore belt, which allows correlating reflectors with surface geology, magnetic map, and drilling sections into a broad 3D model of the ore belt. Massive ores have acoustic properties that make them directly detectable with seismic reflection methods assuming the deposit size is sufficient for applied seismic wavelengths. The seismic data revealed numerous interesting high-amplitude reflectors within the interpreted host-rock suites potentially coinciding with sulfides.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 263 ◽  
Author(s):  
Suvi Heinonen ◽  
Michal Malinowski ◽  
Felix Hloušek ◽  
Gardar Gislason ◽  
Stefan Buske ◽  
...  

We show that by using an advanced pre-stack depth imaging algorithm it is possible to retrieve meaningful and robust seismic images with sparse shot points, using only 3–4 source points per kilometer along a seismic profile. Our results encourage the use of 2D seismic reflection profiling as a reconnaissance tool for mineral exploration in areas with limited access for active seismic surveys. We used the seismic data acquired within the COGITO-MIN project comprising two approximately 6 km long seismic reflection profiles at the polymetallic Kylylahti massive sulfide mine site in eastern Finland. The 2D seismic data acquisition utilized both Vibroseis and dynamite sources with 20 m spacing and wireless receivers spaced every 10 m. For both source types, the recorded data show clear first breaks over all offsets and reflectors in the raw shot gathers. The Kylylahti area is characterized by folded and faulted, steeply dipping geological contacts and structures. We discuss post-stack and pre-stack data processing and compare time and depth imaging techniques in this geologically complex Precambrian hardrock area. The seismic reflection profiles show prominent reflectors at 4.5–8 km depth utilizing different migration routines. In the shallow subsurface, steep reflectors are imaged, and within and underneath the known Kylylahti ultramafic body reflectivity is prominent but discontinuous.


1978 ◽  
Vol 15 (7) ◽  
pp. 1112-1121 ◽  
Author(s):  
D. F. Sangster

Volcanic rocks, distributed to the north, west, and south of the Kisseynew gneissic belt in Manitoba and Saskatchewan, define a crescent-shaped belt herein informally referred to as the 'circum-Kisseynew volcanic belt'. Field relationships lead to the conclusion that the flanking volcanics are correlative with, and grade basinward to, greywackes and shales.Nearly 30 volcanogenic massive sulfide deposits, interpreted as coeval with their host rocks, are distributed throughout the circum-Kisseynew volcanic belt. Lead isotopic abundances in a representative number of these deposits are, apart from 204-error, relatively homogeneous in composition and model lead ages determined from these isotopic ratios fall, for the most part, between 1700 and 1900 Ma. This is regarded as good evidence that the circum-Kisseynew volcanic belt, as well as its greywacke equivalent, is largely Aphebian in age.Model lead ages for sulfide deposits from the entire circum-Kisseynew volcanic belt, with one exception, agree well with recent Rb–Sr and U–Pb age determinations from the southern portion of the belt. Reasons for the exception, in the Hanson Lake area, are discussed in some detail.


1992 ◽  
Vol 129 (5) ◽  
pp. 633-636 ◽  
Author(s):  
N. R. Goulty ◽  
M. Leggett ◽  
T. Douglas ◽  
C. H. Emeleus

AbstractWe have conducted a seismic reflection test over a short profile on the granite of the Skye Tertiary central intrusive complex. From previous gravity modelling work it had been inferred that the granite is approximately 1.5 km thick and overlies basic rocks. The seismic data indicate that the granite is at least 2 km thick at the test location. Reflection events of alternating polarity between depths of 2.1 and 2.4 km suggest that basic and acidic sheets are interlayered at the base of the granitic mass.


Tectonics ◽  
1989 ◽  
Vol 8 (2) ◽  
pp. 305-332 ◽  
Author(s):  
W. F. Cannon ◽  
Alan G. Green ◽  
D. R. Hutchinson ◽  
Myung Lee ◽  
Bernd Milkereit ◽  
...  

Geophysics ◽  
1988 ◽  
Vol 53 (7) ◽  
pp. 894-902 ◽  
Author(s):  
Ruhi Saatçilar ◽  
Nezihi Canitez

Amplitude‐ and frequency‐modulated wave motion constitute the ground‐roll noise in seismic reflection prospecting. Hence, it is possible to eliminate ground roll by applying one‐dimensional, linear frequency‐modulated matched filters. These filters effectively attenuate the ground‐roll energy without damaging the signal wavelet inside or outside the ground roll’s frequency interval. When the frequency bands of seismic reflections and ground roll overlap, the new filters eliminate the ground roll more effectively than conventional frequency and multichannel filters without affecting the vertical resolution of the seismic data.


Geology ◽  
1981 ◽  
Vol 9 (12) ◽  
pp. 569 ◽  
Author(s):  
J. A. Brewer ◽  
L. D. Brown ◽  
D. Steiner ◽  
J. E. Oliver ◽  
S. Kaufman ◽  
...  

2021 ◽  
Author(s):  
Pimpawee Sittipan ◽  
Pisanu Wongpornchai

Some of the important petroleum reservoirs accumulate beneath the seas and oceans. Marine seismic reflection method is the most efficient method and is widely used in the petroleum industry to map and interpret the potential of petroleum reservoirs. Multiple reflections are a particular problem in marine seismic reflection investigation, as they often obscure the target reflectors in seismic profiles. Multiple reflections can be categorized by considering the shallowest interface on which the bounces take place into two types: internal multiples and surface-related multiples. Besides, the multiples can be categorized on the interfaces where the bounces take place, a difference between long-period and short-period multiples can be considered. The long-period surface-related multiples on 2D marine seismic data of the East Coast of the United States-Southern Atlantic Margin were focused on this research. The seismic profile demonstrates the effectiveness of the results from predictive deconvolution and the combination of surface-related multiple eliminations (SRME) and parabolic Radon filtering. First, predictive deconvolution applied on conventional processing is the method of multiple suppression. The other, SRME is a model-based and data-driven surface-related multiple elimination method which does not need any assumptions. And the last, parabolic Radon filtering is a moveout-based method for residual multiple reflections based on velocity discrimination between primary and multiple reflections, thus velocity model and normal-moveout correction are required for this method. The predictive deconvolution is ineffective for long-period surface-related multiple removals. However, the combination of SRME and parabolic Radon filtering can attenuate almost long-period surface-related multiple reflections and provide a high-quality seismic images of marine seismic data.


Sign in / Sign up

Export Citation Format

Share Document