Factors affecting R6 fungicide toxicity on sea urchin fertilization and early development: Roles of exposure routes and mixture components

2001 ◽  
Vol 20 (8) ◽  
pp. 404-411 ◽  
Author(s):  
G Pagano ◽  
M Iaccarino ◽  
A De Biase ◽  
S Meri ◽  
M Warnau ◽  
...  

A technical fungicide mixture, R6 and its components, cymoxanil (CYM) and cupric oxychloride (Cu-OCl), were tested by sea urchin bioassays (Paracentrotus lividus and Sphaerechinus granularis). A set of toxicity endpoints was evaluated including both lethal and sublethal effects with the following endpoints: (a) acute embryotoxicity, (b) developmental defects, (c) changes in sperm fertilization success, (d) transmissible damage from sperm to the offspring, and (e) cytogenetic abnormalities. Acute effects on developing embryos were observed as early (prehatch) mortality at R6 levels 25 g/ml. The pesticide mixture R6 was tested at realistic concentrations, ranging from 25 ng/ ml to 2.5 g/ml, and the two components, CYM and CuOCl, were tested, either alone or in mixture, at concentrations equal to their levels in the corresponding R6 solutions. R6 was either dissolved in filtered seawater (water only, W-O), or spiked in ‘‘pristine’’ silt–clay sediment or soil samples before bioassays. Developmental toxicity of R6, following W-O dissolution, displayed a significant dose-related increase of larval malformations and differentiation arrest at concentrations of 750 ng/ml to 2.5 g/ml both in P. lividus and in S. granularis larvae. Developmental toxicity was removed in spiked sediment up to R6 nominal levels (25 g/ml), 10-fold above the embryotoxic R6 levels in W-O exposure. No significant developmental toxicity was exerted by CYM or Cu-OCl (W-O exposure) up to their concentrations equivalent to 2.5 g/ml R6. The laboratory-prepared mixture of CYM and Cu-OCl, in the same concentration range, only resulted in minor effects, as larval retardation, suggesting the presence of toxic impurities (or additional components) in the R6 formulation. When sperm from either P. lividus or S. granularis were exposed to R6 before fertilization, a W-O exposure resulted in a dose-related decrease in fertilization of P. lividus sperm (up to 250 g/ml R6), whereas S. granularis sperm underwent a significant increase of fertilization rate at the highest R6 nominal levels (up to 25 g/ml). Equivalent CYM or Cu-OCl levels were ineffective on sperm fertilization success in both species. The offspring of S. granularis sperm exposed to 25 g/ml R6 showed a significant increase in larval malformations, which were not detected in the offspring of R6-exposed P. lividus sperm. Again, CYM or Cu-OCl was unable to exert any transmissible damage from sperm to the offspring in either species. The present study raises the case of possible discrepancies between toxicity of a technical mixture and of its analytical-grade components, also providing evidence for a loss of pesticide toxicity following dispersion in an environmental matrix such as sediment or soil.

Dose-Response ◽  
2008 ◽  
Vol 6 (4) ◽  
pp. dose-response.0 ◽  
Author(s):  
Giovanni Pagano ◽  
Giuseppe Castello ◽  
Marialuisa Gallo ◽  
Ilaria Borriello ◽  
Marco Guida

A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and wastewater from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm ( Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition ( Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels ≥1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels ≥1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process.


2010 ◽  
Vol 61 (11) ◽  
pp. 2733-2739 ◽  
Author(s):  
H. Wang ◽  
H. H. Huang ◽  
J. Ding ◽  
Y. H. Wang

Sperm cell and embryo toxicity tests using the sea urchin Strongylocentrotus intermedius (S. intermedius) were performed to assess the toxicity of indoxacarb, a new widely used insecticide. New toxicity data for indoxacarb expressed as median effective concentration (EC50) were reported for the sea urchin species. When sperms and cells were exposed to the pesticide before fertilization, no significant inhibition in the fertilization success of S. intermedius (up to 40 mg/L) was observed. Developmental toxicity of the pesticide displayed a significant dose-related increase of larval malformations and differentiation arrest at concentrations of 0.1 mg/L to 40.0 mg/L at each cleavage, including the 2-cell stage, 4-cell, blastula, gastrula, prism and 4-arm pluteus stages. It seems that 4-arm pluteus is the most sensitive to indoxacarb with the EC50 of 3.73 mg/L, two times less than that of the first cleavage stage. All these results indicate that more attentions should be paid to the potential marine pollutions caused by this pesticide indoxacarb.


2021 ◽  
Vol 22 (22) ◽  
pp. 12498
Author(s):  
Luisa Albarano ◽  
Valerio Zupo ◽  
Marco Guida ◽  
Giovanni Libralato ◽  
Davide Caramiello ◽  
...  

Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) represent the most common pollutants in the marine sediments. Previous investigations demonstrated short-term sublethal effects of sediments polluted with both contaminants on the sea urchin Paracentrotus lividus after 2 months of exposure in mesocosms. In particular, morphological malformations observed in P. lividus embryos deriving from adults exposed to PAHs and PCBs were explained at molecular levels by de novo transcriptome assembly and real-time qPCR, leading to the identification of several differentially expressed genes involved in key physiological processes. Here, we extensively explored the genes involved in the response of the sea urchin P. lividus to PAHs and PCBs. Firstly, 25 new genes were identified and interactomic analysis revealed that they were functionally connected among them and to several genes previously defined as molecular targets of response to the two pollutants under analysis. The expression levels of these 25 genes were followed by Real Time qPCR, showing that almost all genes analyzed were affected by PAHs and PCBs. These findings represent an important further step in defining the impacts of slight concentrations of such contaminants on sea urchins and, more in general, on marine biota, increasing our knowledge of molecular targets involved in responses to environmental stressors.


2021 ◽  
Vol 269 ◽  
pp. 115744
Author(s):  
Flora Rendell-Bhatti ◽  
Periklis Paganos ◽  
Anna Pouch ◽  
Christopher Mitchell ◽  
Salvatore D’Aniello ◽  
...  

2020 ◽  
Vol 9 (4) ◽  
pp. 537-543
Author(s):  
Elena Maria Scalisi ◽  
Roberta Pecoraro ◽  
Antonio Salvaggio ◽  
Aurora Corsaro ◽  
Giuseppina Messina ◽  
...  

Abstract Organophosphates are a large class of chemicals with anticholinesterase action insecticides. Dimethoate belongs to the class of organophosphates and it is used for agriculture purpose. Its main toxicological role in animals and humans is the inhibition of the activity of acetylcholinesterase. Although it is not considered genotoxic, carcinogenic and teratogen, there is evidence of increased pup mortality in developmental neurotoxicity studies. Since there is scant published literature about developmental toxicity, we investigated the adverse effects of dimethoate on fertilization and embryonic development in sea urchin (Paracentrotus lividus), a model organism widely used to assess the toxicity of contaminants on environmental matrices; so pesticide residues can be released into the environment, and could affect the health of organisms, including humans. Different solution of dimethoate (4 × 10−3, 4 × 10−4, 4 × 10−5, 4 × 10−6 and 4 × 10−7 g/10 ml) have been tested on spermatozoa of P. lividus to evaluate the fertilizing ability of them when we added egg cells untreated. We demonstrated that dimethoate does not interfere with fertilizing ability of spermatozoa but egg cells fertilized by treated spermatozoa showed alterations in the segmentation planes as asymmetric and/or asynchronous cell divisions.


2020 ◽  
Vol 8 (9) ◽  
pp. 661
Author(s):  
Davide Asnicar ◽  
Costanza Cappelli ◽  
Ahmad Safuan Sallehuddin ◽  
Nur Atiqah Maznan ◽  
Maria Gabriella Marin

Despite the widespread use of herbicide glyphosate in cultivation, its extensive runoff into rivers and to coastal areas, and the persistence of this chemical and its main degradation product (aminomethylphosphonic acid, AMPA) in the environment, there is still little information on the potential negative effects of glyphosate, its commercial formulation Roundup® and AMPA on marine species. This study was conducted with the aim of providing a comparative evaluation of the effects of glyphosate-based and its derived chemicals on the larval development of the sea urchin Paracentrotus lividus, thus providing new data to describe the potential ecotoxicity of these contaminants. In particular, the effects on larval development, growth and metabolism were assessed during 48 h of exposure from the time of egg fertilization. The results confirm that AMPA and its parent compound, glyphosate have similar toxicity, as observed in other marine invertebrates. However, interestingly, the Roundup® formulation seemed to be less toxic than the glyphosate alone.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 775
Author(s):  
Mary McGann

The benthic foraminifers Bulimina denudata and Eggerelloides advenus are commonly abundant in offshore regions in the Pacific Ocean, especially in waste-discharge sites. The relationship between their abundance and standard macrofaunal sediment toxicity tests (amphipod survival and sea urchin fertilization) as well as sediment chemistry analyte measurements were determined for sediments collected in 1997 in Santa Monica Bay, California, USA, an area impacted by historical sewage input from the Hyperion Outfall primarily since the late 1950s. Very few surface samples proved to be contaminated based on either toxicity or chemistry tests and the abundance of B. denudata did not correlate with any of these. The abundance of E. advenus also did not correlate with toxicity, but positively correlated with total solids and negatively correlated with arsenic, beryllium, chromium, lead, mercury, nickel, zinc, iron, and TOC. In contrast, several downcore samples proved to be contaminated as indicated by both toxicity and chemistry data. The abundance of B.denudata positively correlated with amphipod survival and negatively correlated with arsenic, cadmium, unionized ammonia, and TOC; E. advenus negatively correlated with sea urchin fertilization success as well as beryllium, cadmium, and total PCBs. As B. denudata and E. advenus are tolerant of polluted sediments and their relative abundances appear to track those of macrofaunal toxicity tests, their use as cost- and time-effective marine sediment toxicity tests may have validity and should be further investigated.


Author(s):  
F. Sellem ◽  
B. Bouhaouala-Zahar

AbstractThe present study was conducted to provide biometric data of the edible sea urchin Paracentrotus lividus along the Tunisian coastline where thirteen marine localities were selected randomly. A total of 653 individuals were collected and their metric and weight measurements were recorded. The size distribution of the different samples was determined and relative growth expressions were deduced. Data analysis showed that all localities’ samples of the wild population were dominated by one-size class, except Port Prince and Haouaria. Interestingly, only diameter-height relationships (D-H) were different between the geographical localities. Diameter-weight relationships (D-TW and D-TWTE) revealed a significant negative growth for all the localities, with the exception of Gammarth which showed positive growth for total weight (D-TW). Moreover, the multivariable analysis revealed divergences and/or similarities between metric and weight variables. Altogether, data highlights the inter-population discrimination with respect to geographic localization and clear segregation between the northern and the eastern localities demonstrated the plasticity of the species.


2010 ◽  
Vol 157 (6) ◽  
pp. 1293-1300 ◽  
Author(s):  
Julie Hermans ◽  
Catherine Borremans ◽  
Philippe Willenz ◽  
Luc André ◽  
Philippe Dubois

Sign in / Sign up

Export Citation Format

Share Document