Dietary di(2-ethylhexyl)phthalate-impaired glucose metabolism in experimental animals

2006 ◽  
Vol 25 (9) ◽  
pp. 531-538 ◽  
Author(s):  
Marcela I Martinelli ◽  
Norberto O Mocchiutti ◽  
Claudio A Bernal

The effects of chronic intake of di(2-ethylhexyl)phthalate (DEHP) on the main intermediate glycolytic metabolites in liver and gastrocnemius muscle were investigated in experimental animals. Male Wistar rats (90 -100 g) were fed for 21 days either with a standard chow or the same diet supplemented with 2% (w/w) of DEHP. The DEHP-fed rats had an altered in vivo glucose tolerance associated with abnormal glucose intermediate metabolite contents in liver and skeletal muscle. In these rats, the hepatic content of glucose-6 -phosphate (G-6 -P), fructose-6 -phosphate, pyruvate, lactate, glucose-1 -phosphate and glycogen decreased. At the same time, the G-6 -P content decreased while the pyruvate and lactate levels increased in skeletal muscle. These data, along with the high plasma glucose concentration and the normal lactate blood levels of this group, could indicate that DEHP-fed rats could present a deficiency in muscle glucose and lactate transport, a reduction of the flux through muscle hexokinase and hepatic glucokinase, and a reduction in glycogen synthesis.

2008 ◽  
Vol 294 (1) ◽  
pp. E28-E35 ◽  
Author(s):  
Michale Bouskila ◽  
Michael F. Hirshman ◽  
Jørgen Jensen ◽  
Laurie J. Goodyear ◽  
Kei Sakamoto

Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6- P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3α and -β genes are replaced with mutant forms (GSK3α/βS21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3α/βS21A/S21A/S9A/S9Amice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6- P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6- P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.


1995 ◽  
Vol 269 (2) ◽  
pp. E283-E289 ◽  
Author(s):  
A. K. Saha ◽  
T. G. Kurowski ◽  
N. B. Ruderman

Increases in the concentration of malonyl-CoA in skeletal muscle have been observed in the KKAy mouse, an obese rodent with high plasma insulin and glucose levels [Saha et al. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E95-E101, 1994]. To assess whether insulin and glucose directly regulate malonyl-CoA in muscle, soleus muscles from young rats were incubated with insulin and glucose at various concentrations, and their content of malonyl-CoA was determined. In addition, the effect on malonyl-CoA of denervation and electrically induced muscle contractions was assessed. The concentration of malonyl-CoA in the soleus, taken directly from a rat fed ad libitum, was 2.0 +/- 0.2 nmol/g. In muscles incubated for 20 min in a medium devoid of added insulin and glucose, the concentration was decreased to 0.8 +/- 0.2 nmol/g. When the medium contained 0.5, 7.5, or 30 mM glucose, malonyl-CoA levels were 1.3 +/- 0.1, 1.8 +/- 0.1, or 2.4 +/- 0.2 nmol/g, respectively, in the absence of insulin and 1.7 +/- 0.1, 4.6 +/- 0.3, or 5.5 +/- 0.6 nmol/g in its presence (10 mU/ml). Compared with its level in a control muscle, the concentration of malonyl-CoA was increased threefold in the soleus 6-8 h after denervation and remained twofold higher for > or = 48 h. In contrast, muscle contractions induced by sciatic nerve stimulation, in vivo, acutely decreased the concentration of malonyl-CoA by 30-35%. The results indicate that insulin and glucose, and probably contractile activity, regulate the concentration of malonyl-CoA in muscle.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 256 (3) ◽  
pp. R659-R665 ◽  
Author(s):  
Y. Fong ◽  
L. L. Moldawer ◽  
M. Marano ◽  
H. Wei ◽  
A. Barber ◽  
...  

Macrophage secretory products are suspected to participate in the severe lean tissue wasting related to chronic illness. The protein metabolic effects of chronic, 7-day cachectin/tumor necrosis factor (cachectin) or interleukin 1 alpha (IL-1 alpha) administration in vivo were studied in male Wistar rats that were 1) freely fed, 2) pair fed, 3) total protein and calorie starved, 4) twice daily lipopolysaccharide (LPS) administered, 5) twice daily cachectin administered, and 6) twice daily IL-1 alpha administered. LPS, cachectin, or IL-1 alpha administration produced anorexia; weight loss in these groups was comparable to respective pair-fed animals. However, LPS, cachectin, or IL-1 alpha accelerated peripheral protein wasting while preserving liver protein content, unlike the pattern in the pair-fed or starved animals in which loss of liver proteins and relative preservation of skeletal muscle protein were observed. The decrease in skeletal muscle protein content in LPS- or cytokine-treated animals was associated with coordinate decreases in muscle mRNA levels for the myofibrillar proteins myosin heavy chain, myosin light chain, actin, and in the 18S and 28S subunits of ribosomal RNA. We conclude that chronic exposure to the cytokines, IL-1 alpha or cachectin, can simulate those body and muscle protein changes seen in experimental LPS administration or chronic disease and markedly differ from the pattern of protein redistribution due to caloric restriction.


2017 ◽  
Vol 12 (2) ◽  
pp. 341-348 ◽  
Author(s):  
Barbara Enderle ◽  
Isabella Moser ◽  
Cecil Kannan ◽  
Karl Otfried Schwab ◽  
Gerald Urban

Background: Continuously measured glucose and lactate levels in interstitial fluid (ISF) may markedly differ from their respective blood levels. Methods: Combining microdialysis with a bioanalytical microsystem, the interstitial glucose and lactate concentrations of eight male volunteers with different body mass index (BMI) were monitored during a 2-fold glucose tolerance test over the period of three hours. Results: Significant correlations were found between abdominally measured sensor results and reference measurements ( R2 = .967 for glucose and R2 = .936 for lactate, P < .05). The physiological delay of the abdominally observed glucose appearance in the ISF correlated positively with the BMI ( R2 = .787, P < .05). The relative in vivo recovery of glucose and lactate was inversely proportional to the BMI of the volunteers ( R2 = .540 for glucose, R2 = .609 for lactate, P < .05). One subject with a BMI of > 34 kg/m2 showed abdominally as well as the antebrachially significantly reduced tissue glucose values compared to blood glucose values ( P < .001). Conclusions: A very good correlation between abdominally measured sensor results and the results of the reference method verified the reliability of the BioMEMS. The abdominally measured glucose level in ISF decreased significantly with increasing BMI. Therefore, an in vivo calibration of glucose levels in ISF with blood levels seems to be necessary especially in markedly obese subjects.


Author(s):  
M. Sierra ◽  
M.J. Muñoz ◽  
J. Grasa

The main objective of this work is to characterize the fatigue contractile properties of threedifferent rat muscles (Tibialis Anterior, Extensor Digitorium Longus and Soleus) in order toobtain experimental parameters for numerical simulations.Experiments were conducted “in vivo" on three groups (n = 6) of male Wistar rats (210 +/- 11g)using a protocol developed by authors in previous works. Muscles were subjected to anelectrical stimulus to achieve tetanic contraction during ten seconds. Digital Image Correlationwas used during tests for 3D strain and displacements measurement that allow the correlationwith the finite element simulations.By means of Computed Tomography, a precise reconstruction of both bone and muscle of therat hindlimb geometry was obtained. The methodology proposed allows to obtain and validatecomputational simulations of skeletal muscle fatigue under different characteristics related tofiber types.63


1977 ◽  
Vol 233 (6) ◽  
pp. E509 ◽  
Author(s):  
J L Ivy

Skeletal muscle cyclic AMP (cAMP) content and glycogen synthesis were investigated in male rats subjected to exhaustive exercise, alloxan diabetes, and combinations of these conditions. After an exhaustive swim or control treatment of wading, randomly selected animals were administered 500 mg glucose via stomach tube. Two hours after glucose administration, gastrocnemius glycogen levels rose from 1.31 to 10.67 mg/g wet wt in fatigued nondiabetics (FND), producing a 94% supercompensation above control values. Glycogen of fatigued diabetics (FD) increased from 0.88 to 4.21 mg/g wet wt during the first 2 hr after glucose administration and did not reach control values for 24 h. In conjunction with these glycogen changes, cAMP increased from 1.23 to 2.59 and 1.47 to 2.81 pmol/mg wet wt for FND and FD, respectively (P less than 0.05). No difference in cAMP levels between diabetics and nondiabetics was found. These in vivo data suggest that insulin may not be essential for muscle glycogen synthesis, but that after glycogen depletion it plays a prominent role in supercompensation. Also, this hormone's mechanism of action in skeletal muscle does not appear to be mediated through alteration in the tissue cAMP concentration.


1996 ◽  
Vol 270 (3) ◽  
pp. E424-E429 ◽  
Author(s):  
B. Gumbiner ◽  
J. F. Mucha ◽  
J. E. Lindstrom ◽  
I. Rekhi ◽  
J. N. Livingston

Experimentally induced hypertriglyceridemia (HTG) and high plasma free fatty acid (FFA) levels impair in vivo insulin action. To determine if this is a consequence of impaired in vivo insulin receptor autophosphorylation and related to defective receptor signaling, hyperinsulinemic euglycemic clamps, indirect calorimetry, and skeletal muscle biopsies were performed in nine healthy subjects. In vivo insulin action was determined from the glucose infusion rate (GINF) and glucose oxidation (Glcox) during 40 and 120 mU/m2 /min clamps with (HTG clamp) and without (control clamp) a triglyceride emulsion infusion. The percentage of receptors autophosphorylated in vivo was determined by 125I-labeled insulin tracer binding in skeletal muscle immunoprecipitates of insulin receptors and phosphorylated receptors. Compared with the control clamps, plasma triglycerides and FFA increased four- and twofold, whereas GINF and Glcox decreased 15 and 35%, respectively, during the HTG clamps (all P<0.05). However, the percentages of receptors phosphorylated after the 40 and 120 mU/m2/min HTG clamps (9.2 +/- 1.5 and 21.1 +/- 2.6%, respectively) were similar to the control clamps (9.0 +/- 0.6 and 18.6 +/- 2.2%, respectively). These results indicate that, if impaired insulin signal transduction is a mechanism by which HTG and FFA impair insulin action, it occurs at a site downstream from insulin receptor autophosphorylation.


1995 ◽  
Vol 268 (1) ◽  
pp. E60-E66 ◽  
Author(s):  
A. P. Bevan ◽  
J. W. Burgess ◽  
J. F. Yale ◽  
P. G. Drake ◽  
D. Lachance ◽  
...  

Peroxovanadium (pV) compounds activate the insulin receptor kinase in hepatocytes and inhibit the dephosphorylation of insulin receptors in hepatic endosomes with highly correlated potencies (Posner, B. I., R. Faure, J. W. Burgess, A. P. Bevan, D. Lachance, G. Zhang-Sun, J. B. Ng, D. A. Hall, B. S. Lum, and A. Shaver J. Biol. Chem. 269: 4596–4604, 1994). After intravenous administration, K2[VO(O2)2(picolinato)].2H2O [bpV(pic)], VO(O2) (picolinato) (H2O)2 [mpV(pic)], K[VO(O2)2(picolinato)].3H2O [bpV(phen)], and K[VO(O2)2(4,7-dimethyl-1,10-phenanthroline)].1/2H2O [bpV(Me2phen)] produced 50% of their maximal hypoglycemic effect at doses of 0.04, 0.04, 0.32, and 0.65 mumol/100 g body wt, respectively. In contrast, their potencies as inhibitors of dephosphorylation were bpV(pic) = bpV(phen) > mpV(pic) = bpV(Me2phen). bpV(pic) stimulated [14C]glucose incorporation into rat diaphragm glycogen in vivo, and its effect was dose dependent, synergistic with insulin, and evident in other skeletal muscles. In contrast, bpV(phen) displayed no effect on glycogen synthesis in skeletal muscle. mpV(pic) stimulated and bpV(Me2phen) had no effect on glycogen synthesis in the diaphragm. bpV(pic) augmented rat diaphragm insulin receptor kinase 2.2-fold with a time-integrated response 70% that of insulin. In contrast, the effect of bpV(phen) was delayed and much reduced. Thus, the in vivo potencies of pV compounds reflect differing capacities to act on skeletal muscle. The ancillary ligand within the pV complex may target one tissue in preference to another.


1987 ◽  
Vol 244 (3) ◽  
pp. 655-660 ◽  
Author(s):  
L Budohoski ◽  
R A Challiss ◽  
A Dubaniewicz ◽  
H Kaciuba-Usciłko ◽  
B Leighton ◽  
...  

1. Prolonged elevation of the plasma adrenaline concentration was produced in rats by implantation of adrenaline-releasing retard-tablets. With this technique, a hyperadrenalinaemic state is maintained for at least 5 days. 2. At 6 h after implantation of the retard-tablet it was found that plasma glucose and fatty acid concentrations increased and insulin concentration decreased compared with values obtained from placebo-tablet-implanted rats. Administration of a subcutaneous glucose load demonstrated an impaired glucose tolerance in vivo, and incubation of soleus muscle strips from 6 h-hyperadrenalinaemic rats in vitro demonstrated a decreased sensitivity of the rates of glycolysis and glucose transport to insulin. 3. The sensitivities of the rates of glycolysis, glucose transport and glycogen synthesis to insulin were determined for the incubated soleus muscle preparation isolated from animals after 48 h, 72 h and 120 h duration of hyperadrenalinaemia. At 48 h after retard-tablet implantation, the sensitivity of the processes of glucose transport and glycolysis was decreased; at 72 h, the insulin-sensitivities of the rates of glycolysis and glucose transport in skeletal muscle were similar to those determined for control animals; at 120 h, however, the sensitivities of the processes of glucose transport and glycolysis were both statistically significantly increased. In contrast, no changes in the sensitivity of the process of glycogen synthesis were observed at any of the time intervals studied. 4. The possible biochemical basis for the observed changes in skeletal-muscle insulin-sensitivity with prolonged hyperadrenalinaemia is discussed.


Sign in / Sign up

Export Citation Format

Share Document