Melanoma Stem Cells: The Dark Seed of Melanoma

2008 ◽  
Vol 26 (17) ◽  
pp. 2890-2894 ◽  
Author(s):  
Susan E. Zabierowski ◽  
Meenhard Herlyn

Cells with stem-cell markers and features have recently been identified in melanoma tissues and cell lines. Melanoma stem-like cells possess many traits of tumor-initiating or tumor stem cells including self-renewal capacity, high tumorigenicity, and differentiation into various mesenchymal lineages, including melanocytic cells. Four subpopulations of melanoma-initiating cells have been distinguished: CD20+, CD133+, label-retaining or slow-cycling cells, and side-population cells with high efflux activities. Whether these are distinct or overlapping populations is currently under investigation. Ongoing studies are dissecting and characterizing the hierarchy of these subpopulations within a malignant lesion. Understanding these and the dynamics of clonal dominance will aid in the development of novel therapeutic strategies.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuan Wang ◽  
Jun Cai ◽  
Lei Zhao ◽  
Dejun Zhang ◽  
Guojie Xu ◽  
...  

AbstractExperimental and clinical studies over the past two decades have provided overwhelming evidence that human cancers, including prostate cancer (PCa), harbor cancer stem cells (CSCs) that sustain tumor growth, drive tumor progression and mediate therapy resistance and tumor relapse. Recent studies have also implicated NUMB as a PCa suppressor and an inhibitor of PCa stem cells (PCSCs); however, exactly how NUMB functions in these contexts remains unclear. Here, by employing bioinformatics analysis and luciferase assays and by conducting rescue experiments, we first show that NUMB is directly targeted by microRNA-9-5p (miR-9-5p), an oncogenic miR associated with poor prognosis in many malignancies. We further show that miR-9-5p levels are inversely correlated with NUMB expression in CD44+ PCSCs. miR-9-5p reduced NUMB expression and inhibited numerous PCSC properties including proliferation, migration, invasion as well as self-renewal. Strikingly, overexpression of NUMB in CD44+ PCSCs overcame all of the above PCSC properties enforced by miR-9-5p. Taken together, our results suggest that inhibiting the expression of the oncomiR miR-9-5p and overexpressing NUMB may represent novel therapeutic strategies to target PCSCs and PCa metastasis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2464-2464
Author(s):  
Grant Anthony Challen ◽  
Margaret A Goodell

Abstract Over the decades since hematopoietic stem cells (HSCs) were first identified, the traditional view has been that the hematopoietic system is regenerated by a single pool of multipotent, quiescent HSCs that are sequentially recruited into cell cycle and which then progressively divide and differentiate until they are exhausted and ultimately replaced by the next cohort of stem cells. However, recent evidence has challenged this classical clonal succession model of HSC hierarchy by suggesting that the hematopoietic system is maintained by a pool of different HSC subtypes, with distinct self-renewal and differentiation potentials (the clonal diversity model, Figure 1). The side population (SP), characterized by Hoechst dye efflux, has been used as a method for isolating HSCs for over a decade and the SP has been shown to be highly enriched for HSC activity. While the entire SP is strikingly homogeneous with respect to expression of canonical stem cell markers such as Sca-1 and c-Kit, we recently observed heterogeneous expression for the SLAM family molecule CD150 within the SP, with CD150+ cells more prevalent in the lower SP and CD150− cell more prevalent in the upper SP. We decided to examine this observation further by investigating the properties of cells from different regions of the SP. Functional capacity was assessed by competitive bone marrow transplantation of upper SP cells, lower SP cells, and a combination of the two populations. Lower SP cells showed better engraftment than upper SP cells in recipient mice, a trend that continued when donor HSCs were isolated from primary recipients and re-transplanted into secondary hosts. Lower SP cells showed 3-fold better engraftment than upper SP cells in secondary transplants, suggesting better self-renewal capacity. However, analysis of the hematopoietic lineages formed by donor cells in recipient mice demonstrated that while both upper and lower SP cells were capable of forming all mature lineages, lower SP cells were biased towards myeloid differentiation while upper SP cells were biased towards lymphoid differentiation. The lineage biases observed from transplantation of one cell population alone were exacerbated when both upper and lower SP cells were co-transplanted into the same recipient mouse, suggesting that while both populations are capable of forming all hematopoietic lineages, in the presence of the other stem cell type (as would be the case in normal homeostasis) that the majority of the output from each HSC subtype is almost exclusively lymphoid or myeloid. The lineage contribution trends observed in the peripheral blood were also reproduced when bone marrow of transplanted mice was analyzed, including at the level of progenitors with lower SP cells showing greater ability to make myeloid progenitors (megakaryocyte-erythrocyte progenitors and granulocyte-macrophage progenitors) and upper SP cells producing proportionately more common lymphoid progenitors. Microarray analysis of upper and lower SP cells to determine the molecular signatures underlying these functional differences found many genes critical for long-term HSC self-renewal to be highly expressed in lower SP cells including Rb1, Meis1, Pbx1 and TGFbr2 while upper SP cells showed higher expression of cell cycle and activation genes. Cell cycle analysis showed upper SP cells to be approximately 2-fold more proliferative than lower SP cells (18.9% to 8.3% Ki-67+, 39.4% to 20.1% BrdU+ 3-days post-BrdU administration). The clonal diversity model which proposes the adult HSC compartment consists of a fixed number of different HSC subtypes each with pre-programmed behavior has important implications for using HSCs in experimental and clinical settings. While other studies have provided functional evidence for the clonal diversity model, this is the first study to prospectively isolate the functionally distinct HSC subtypes prior to transplantation. Figure Figure


2020 ◽  
Vol 10 ◽  
Author(s):  
Nastassja Terraneo ◽  
Francis Jacob ◽  
Anna Dubrovska ◽  
Jürgen Grünberg

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lijuan Zou ◽  
Hengpeng He ◽  
Zhiguo Li ◽  
Ou Chen ◽  
Xiukun Jia ◽  
...  

AbstractLong noncoding RNAs (lncRNAs) are implicated tumor development in a range of different cancers, including pancreatic cancer (PC). Cancer stem cells (CSCs), a drug-resistant cancer cell subset, drive tumor progression in PC. In this work, we aimed to investigate the mechanism by which lncRNA LINC00261 affects the biological functions of CSCs during the progression of PC. Microarray analysis of differentially expressed genes and lncRNAs suggested that LINC00261 is downregulated in PC. Both LINC00261 and ITIH5 were confirmed to be downregulated in PC cells and PC stem cells. Gain-of-function and loss-of-function investigations were performed to analyze their effects on cell proliferation, drug resistance, cell cycle distribution, self-renewal, invasion, and ultimately overall tumorigenicity. These experiments revealed that the expression of stem cell markers was reduced, and cell proliferation, self-renewal ability, cell invasion, drug resistance, and tumorigenicity were all suppressed by upregulation of LINC00261 or ITIH5. The results of dual-luciferase reporter gene, ChIP, and RIP assays indicated that LINC00261 binds directly to GATA6, increasing its activity at the ITIH5 promoter. The presence of LINC00261 and GATA6 inhibited the self-renewal and tumorigenesis of PC stem cells, while silence of ITIH5 rescued those functions. Collectively, this study identifies the tumor suppressive activity of LINC00261 in PC, showing that this lncRNA limits the functions of PC stem through an ITIH5/GATA6 regulatory pathway.


Biomedicines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 7 ◽  
Author(s):  
Lingfeng Fu ◽  
Luke Bu ◽  
Tadahito Yasuda ◽  
Mayu Koiwa ◽  
Takahiko Akiyama ◽  
...  

Gastric cancer (GC) is a leading cause of cancer-related death worldwide. Cancer stem cells (CSCs) are known to be involved in chemotherapy resistance and the development of metastases. Although CSCs harbor self-renewal and tumorigenic abilities, the immune microenvironment surrounding CSCs provides various factors and supports the maintenance of CSC properties. The current review summarizes the accumulating findings regarding the relationship between the immune microenvironment and gastric CSCs (GCSCs), which will support the possibility of developing novel therapeutic strategies for targeting GCSCs.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Geru Zhang ◽  
Qiwen Li ◽  
Quan Yuan ◽  
Shiwen Zhang

Stem cells play an irreplaceable role in the development, homeostasis, and regeneration of the craniofacial bone. Multiple populations of tissue-resident craniofacial skeletal stem cells have been identified in different stem cell niches, including the cranial periosteum, jawbone marrow, temporomandibular joint, cranial sutures, and periodontium. These cells exhibit self-renewal and multidirectional differentiation abilities. Here, we summarized the properties of craniofacial skeletal stem cells, based on their spatial distribution. Specifically, we focused on the in vivo genetic fate mapping of stem cells, by exploring specific stem cell markers and observing their lineage commitment in both the homeostatic and regenerative states. Finally, we discussed their application in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document