scholarly journals Tumor Antigen–Targeted, Monoclonal Antibody–Based Immunotherapy: Clinical Response, Cellular Immunity, and Immunoescape

2010 ◽  
Vol 28 (28) ◽  
pp. 4390-4399 ◽  
Author(s):  
Robert L. Ferris ◽  
Elizabeth M. Jaffee ◽  
Soldano Ferrone

PurposeTumor antigen (TA) –targeted monoclonal antibodies (mAb), rituximab, trastuzumab, and cetuximab, are clinically effective for some advanced malignancies, especially in conjunction with chemotherapy and/or radiotherapy. However, these results are only seen in a subset (20% to 30%) of patients. We discuss the immunologic mechanism(s) underlying these clinical findings and their potential role in the variability in patients' clinical response.MethodsWe reviewed the evidence indicating that the effects of TA-targeted mAb-based immunotherapy are mediated not only by inhibition of signaling pathways, but also by cell-mediated cytotoxicity triggered by the infused TA-targeted mAb. We analyzed the immunologic variables that can influence the outcome of antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro and in animal model systems. We also analyzed the correlation reported between these variables and the clinical response to mAb-based immunotherapy.ResultsOf the variables that influence ADCC mediated by TA-targeted mAb, only polymorphisms of Fcγ receptors (FcγR) expressed by patients' lymphocytes were correlated with clinical efficacy. However, this correlation is not absolute and is not observed in all malignancies. Thus other variables may be responsible for the antitumor effects seen in mAb-treated patients. We discuss the evidence that triggering of TA-specific cellular immunity by TA-targeted mAb, in conjunction with immune escape mechanisms used by tumor cells, may contribute to the differential clinical responses to mAb-based immunotherapy.ConclusionIdentification of the mechanism(s) underlying the clinical response of patients with cancer treated with TA-targeted mAb is crucial to optimizing their application in the clinic and to selecting the patients most likely to benefit from their use.

2020 ◽  
Vol 8 (1) ◽  
pp. e000233 ◽  
Author(s):  
Nicolas Torres ◽  
María Victoria Regge ◽  
Florencia Secchiari ◽  
Adrián David Friedrich ◽  
Raúl Germán Spallanzani ◽  
...  

BackgroundNatural killer and cytotoxic CD8+T cells are major players during antitumor immunity. They express NKG2D, an activating receptor that promotes tumor elimination through recognition of the MHC class I chain-related proteins A and B (MICA and MICB). Both molecules are overexpressed on a great variety of tumors from different tissues, making them attractive targets for immunotherapy. However, tumors shed MICA and MICB, and the soluble forms of both (sMICA and sMICB) mediate tumor-immune escape. Some reports indicate that anti-MICA antibodies (Ab) can promote the restoration of antitumor immunity through the induction of direct antitumor effects (antibody-dependent cell-mediated cytotoxicity, ADCC) and scavenging of sMICA. Therefore, we reasoned that an active induction of anti-MICA Ab with an immunogenic protein might represent a novel therapeutic and prophylactic alternative to restore antitumor immunity.MethodsWe generated a highly immunogenic chimeric protein (BLS-MICA) consisting of human MICA fused to the lumazine synthase fromBrucellaspp (BLS) and used it to generate anti-MICA polyclonal Ab (pAb) and to investigate if these anti-MICA Ab can reinstate antitumor immunity in mice using two different mouse tumors engineered to express MICA. We also explored the underlying mechanisms of this expected therapeutic effect.ResultsImmunization with BLS-MICA and administration of anti-MICA pAb elicited by BLS-MICA significantly delayed the growth of MICA-expressing mouse tumors but not of control tumors. The therapeutic effect of immunization with BLS-MICA included scavenging of sMICA and the anti-MICA Ab-mediated ADCC, promoting heightened intratumoral M1/proinflammatory macrophage and antigen-experienced CD8+T cell recruitment.ConclusionsImmunization with the chimeric protein BLS-MICA constitutes a useful way to actively induce therapeutic anti-MICA pAb that resulted in a reprogramming of the antitumor immune response towards an antitumoral/proinflammatory phenotype. Hence, the BLS-MICA chimeric protein constitutes a novel antitumor vaccine of potential application in patients with MICA-expressing tumors.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Philippe Fournier ◽  
Volker Schirrmacher

New approaches of therapeutic cancer vaccination are needed to improve the antitumor activity of T cells from cancer patients. We studied over the last years the activation of human T cells for tumor attack. To this end, we combined the personalized therapeutic tumor vaccine ATV-NDV—which is obtained by isolation, shortin vitroculture, irradiation, and infection of patient's tumor cells by Newcastle Disease Virus (NDV)—with bispecific antibodies (bsAbs) binding to this vaccine and introducing anti-CD3 (signal 1) and anti-CD28 (signal 2) antibody activities. This vaccine called ATV-NDV/bsAb showed the unique ability to reactivate a preexisting potentially anergized antitumor memory T cell repertoire. But it also activated naive T cells to have antitumor propertiesin vitroandin vivo. This innovative concept of direct activation of cancer patients' T cells via cognate and noncognate interactions provides potential for inducing strong antitumor activities aiming at overriding T cell anergy and tumor immune escape mechanisms.


2010 ◽  
Vol 28 (28) ◽  
pp. 4324-4332 ◽  
Author(s):  
Joshua D. Brody ◽  
Weiyun Z. Ai ◽  
Debra K. Czerwinski ◽  
James A. Torchia ◽  
Mia Levy ◽  
...  

Purpose Combining tumor antigens with an immunostimulant can induce the immune system to specifically eliminate cancer cells. Generally, this combination is accomplished in an ex vivo, customized manner. In a preclinical lymphoma model, intratumoral injection of a Toll-like receptor 9 (TLR9) agonist induced systemic antitumor immunity and cured large, disseminated tumors. Patients and Methods We treated 15 patients with low-grade B-cell lymphoma using low-dose radiotherapy to a single tumor site and—at that same site—injected the C-G enriched, synthetic oligodeoxynucleotide (also referred to as CpG) TLR9 agonist PF-3512676. Clinical responses were assessed at distant, untreated tumor sites. Immune responses were evaluated by measuring T-cell activation after in vitro restimulation with autologous tumor cells. Results This in situ vaccination maneuver was well-tolerated with only grade 1 to 2 local or systemic reactions and no treatment-limiting adverse events. One patient had a complete clinical response, three others had partial responses, and two patients had stable but continually regressing disease for periods significantly longer than that achieved with prior therapies. Vaccination induced tumor-reactive memory CD8 T cells. Some patients' tumors were able to induce a suppressive, regulatory phenotype in autologous T cells in vitro; these patients tended to have a shorter time to disease progression. One clinically responding patient received a second course of vaccination after relapse resulting in a second, more rapid clinical response. Conclusion In situ tumor vaccination with a TLR9 agonist induces systemic antilymphoma clinical responses. This maneuver is clinically feasible and does not require the production of a customized vaccine product.


Blood ◽  
2011 ◽  
Vol 118 (15) ◽  
pp. 4159-4168 ◽  
Author(s):  
Karl-Heinz Heider ◽  
Kerstin Kiefer ◽  
Thorsten Zenz ◽  
Matthias Volden ◽  
Stephan Stilgenbauer ◽  
...  

Abstract The tetraspanin CD37 is widely expressed in B-cell malignancies and represents an attractive target for immunotherapy with mAbs. We have chimerized a high-affinity mouse Ab to CD37 and engineered the CH2 domain for improved binding to human Fcγ receptors. The resulting mAb 37.1 showed high intrinsic proapoptotic activity on malignant B cells accompanied by homotypic aggregation. Furthermore, the Ab-mediated high Ab-dependent cell-mediated cytotoxicity (ADCC) on lymphoma and primary CLL cells. mAb 37.1 strongly depleted normal B cells as well as spiked B-lymphoma cells in blood samples from healthy donors as well as malignant B cells in blood from CLL patients. In all assays, mAb 37.1 was superior to rituximab in terms of potency and maximal cell lysis. A single dose of mAb CD37.1 administered to human CD37-transgenic mice resulted in a reversible, dose-dependent reduction of peripheral B cells. In a Ramos mouse model of human B-cell lymphoma, administration of mAb 37.1 strongly suppressed tumor growth. Finally, a surrogate Fc-engineered Ab to macaque CD37, with in vitro proapoptotic and ADCC activities very similar to those of mAb 37.1, induced dose-dependent, reversible B-cell depletion in cynomolgus monkeys. In conclusion, the remarkable preclinical pharmacodynamic and antitumor effects of mAb 37.1 warrant clinical development for B-cell malignancies.


2020 ◽  
Author(s):  
H Gaitantzi ◽  
C Cai ◽  
S Asawa ◽  
K Böttcher ◽  
M Ebert ◽  
...  

Author(s):  
Н.В. Белобородова ◽  
В.В. Мороз ◽  
А.Ю. Бедова

Интеграция метаболизма макроорганизма и его микробиоты, обеспечивающая в норме симбиоз и саногенез, нарушается при заболеваниях, травме, критическом состоянии, и вектор взаимодействия может изменяться в пользу прокариотов по принципу «метаболиты бактерий - против хозяина». Анализ литературы показал, что, с одной стороны, имеется живой интерес к ароматическим микробным метаболитам, с другой - отсутствует четкое представление об их роли в организме человека. Публикации, касающиеся ряда ароматических микробных метаболитов (фенилкарбоновых кислот, ФКК), как правило, не связаны между собой по тематике и направлены на решение тех или иных прикладных задач в разных областях биологии и медицины. Цель обзора - анализ информации о происхождении, биологических эффектах ФКК в экспериментах in vitro и in vivo , и клинических наблюдениях. Обобщая результаты приведенных в обзоре исследований на клеточном, субклеточном и молекулярном уровнях, логично предположить участие ароматических микробных метаболитов в патогенезе полиорганной недостаточности при сепсисе. Наиболее перспективным для раскрытия роли ароматических микробных метаболитов представляется изучение механизмов вторичной почечной недостаточности и септической энцефалопатии. Важным направлением для будущих исследований является изучение влияния продуктов микробной биодеградации ароматических соединений на развитие диссеминированного внутрисосудистого свертывания крови, артериальной гипотензии и септического шока. Результаты дальнейших исследований будут иметь не только фундаментальное значение, но и обогатят практическую медицину новыми диагностическими и лечебными технологиями. Significant increases in blood concentrations of some aromatic metabolites (phenylcarboxylic acids, PhCAs) in patients with sepsis have been previously shown. Enhanced bacterial biodegradation of aromatic compounds has been demonstrated to considerably contribute to this process. Integration of macroorganism metabolism and its microbiota, which provides normal symbiosis and sanogenesis, is disturbed in diseases, trauma, and critical conditions. Direction of this interaction may change in favor of prokaryotes according to the principle, “bacterial metabolites are against the host”. Analysis of literature showed a particular interest of many investigators to aromatic microbial metabolites. However, there is no clear understanding of their role in the human body. Publications on PhCAs are generally not thematically interrelated and usually focus on solving applied tasks in different fields of biology and medicine. The aim of this work was to consolidate existing information about origin and biological effects of PhCAs in in vitro / in vivo experiments and some clinical findings. The presented summary of reported data from studies performed at cellular, sub-cellular, and molecular levels suggests participation of aromatic microbial metabolites in the pathogenesis of multiple organ failure in sepsis. Studying mechanisms of secondary renal failure and septic encephalopathy is most promising for discovering the function of aromatic microbial metabolites. Effects of microbial biodegradation products of aromatic substances on development of disseminated intravascular coagulation, hypotension, and septic shock are an important challenge for future studies. Results of further investigations will be not only fundamental, but will also enrich medical practice with new diagnostic and therapeutic technologies.


2019 ◽  
Vol 24 (40) ◽  
pp. 4779-4793 ◽  
Author(s):  
Paulo M.P. Ferreira ◽  
Lays A.R.L. Rodrigues ◽  
Lunna Paula de Alencar Carnib ◽  
Paulo Víctor de Lima Sousa ◽  
Luis Michel Nolasco Lugo ◽  
...  

Background: Sulforaphane (SF, 1-isothiocyanato-4-(methyl-sulfinyl)-butane) is found in broccoli, cabbage and cauliflower. Methods: we performed a critical review on the antioxidative, chemopreventive and antitumor effects of SF from cruciferous vegetables against prostate cancers and molecular pathways. For a complete and reliable review, primary and secondary resources were used, including original and review articles, books and government documents published until March 2018. Articles that are in duplicity and disconnected are not considered for review. SF is derived from glucoraphanin (4-methyl-sulfinyl-butyl-glucosinate), being one of the most commonly found isothiocyanates in vegetables from Brassica spp., especially in broccoli samples. In vitro studies indicate that SF induces apoptosis in a dependent or non-dependent method of androgens by transcription of tumor suppressor genes, oxidation response and higher expression of phase II enzymes in prostate cancer cells. Sulforaphane also decreases transcription of the nuclear factor kB and antiapoptotic proteins, expression of cyclin D2 and survivin and DNA synthesis, increases Nrf2 gene activity, interferes with genome compacting by inhibition of histone deacetylases and disrupts Hsp90 complexes, which cause cell cycle arrest, mitosis interruption, activation of caspases and mitochondria depolarization. Conclusion: SF and cruciferous vegetables play antioxidative and chemopreventive role, delaying or blocking in vivo carcinogenesis, causing biochemical and epigenetic changes, preventing, delaying, or reversing preneoplastic or advanced prostate lesions, and frequently activating tumor cell death by intrinsic methods of apoptosis. These outcomes encourage the consumption of Brassica specimens, which could be easily achieved by the incorporation of food and vegetables rich in cruciferous isothiocyanates in the diet.


Sign in / Sign up

Export Citation Format

Share Document