Effect of the simultaneous blockade of androgen and estrogen receptors on prostate cancer: Preliminary results.

2011 ◽  
Vol 29 (7_suppl) ◽  
pp. 168-168 ◽  
Author(s):  
R. Nunez-Nateras ◽  
E. P. Castle

168 Background: Androgens and estrogens have been shown to play an important role in normal prostate development and function as well as carcinogenesis and development of the castration resistant phenotype of disease. The aim of this study was to evaluate the effect of a simultaneous administration of an androgen receptor antagonist (bicalutamide) and a selective estrogen receptor modulator (raloxifene) on both androgen sensitive and androgen insensitive prostate cancer cell lines. Methods: Experiments were performed on LNCaP, PC3 and DU145 cell lines. Western blot was utilized for the identification of androgen and estrogen receptors (a andb) in the cell lines. Drug concentrations required to achieve IC 50 were obtained using the MTT assay; such concentrations were identified for the drugs individually and when used in combination. The effect of the drugs on apoptosis was assessed using flow cytometry. Results: Results of the IC 50 for the drugs alone and in combination by each cell line are shown in the table. An enhanced effect was observed when the drugs were used in combination in all the cell lines. It was evident that the combination of the drugs decreased the total drug required to achieve the IC50 decreases considerably. Apoptosis rates were also affected by the simultaneous administration of bicalutamide and raloxifene. The synergistic effect of the combination was reflected in the increase of the apoptosis rate in all cell lines. Conclusions: The simultaneous administration of bicalutamide and raloxifene has a synergistic effect on cell death and apoptosis of DU145, PC3 and LNCaP cell lines. The pathway(s) responsible for this observation may be independent of the androgen receptor as both AR negative cell lines were still affected by the combination over the SERM alone. [Table: see text] No significant financial relationships to disclose.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shoubin Li ◽  
Chunhong Yu ◽  
Yunxia Zhang ◽  
Junjiang Liu ◽  
Yi Jia ◽  
...  

cir-ITCH, a well-known tumor-suppressive circular RNA, plays a critical role in different cancers. However, its expression and functional role in prostate cancer (PCa) are unclear. Herein, we explored the potential mechanism and tumor-inhibiting role of cir-ITCH in PCa. Using reverse transcriptase polymerase chain reaction assay, we analyzed the expression of cir-ITCH in PCa and paired adjacent nontumor tissue samples resected during surgical operation, as well as in two cell lines of human PCa (LNCaP and PC-3) and the immortalized normal prostate epithelial cell line (RWPE-1). Cell viability and migration of PCa cell lines were evaluated using CCK-8 and wound-healing assays. Expression of key proteins of the Wnt/β-catenin and PI3K/AKT/mTOR pathways was detected using western blotting. We found that cir-ITCH expression was typically downregulated in the tissues and cell lines of PCa compared to that in the peritumoral tissue and in RWPE-1 cells, respectively. The results showed that cir-ITCH overexpression significantly inhibits the proliferation, migration, and invasion of human PCa cells and that reciprocal inhibition of expression occurred between cir-ITCH and miR-17. Proteins in the Wnt/β-catenin and PI3K/AKT/mTOR pathways were downregulated by overexpression of cir-ITCH both in androgen receptor-positive LNCaP cells and androgen receptor-negative PC-3 cells. Taken together, these data demonstrated that cir-ITCH plays a tumor-suppressive role in human PCa cells, partly through the Wnt/β-catenin and PI3K/AKT/mTOR pathways. Thus, cir-ITCH may serve as a novel therapeutic target for the treatment of PCa, especially castration-resistant prostate cancer.


2021 ◽  
Vol 14 (2) ◽  
pp. 103
Author(s):  
Zohaib Rana ◽  
Joel D. A. Tyndall ◽  
Muhammad Hanif ◽  
Christian G. Hartinger ◽  
Rhonda J. Rosengren

Androgen receptor (AR)-null prostate tumors have been observed in 11–24% of patients. Histone deacetylases (HDACs) are overexpressed in prostate tumors. Therefore, HDAC inhibitors (Jazz90 and Jazz167) were examined in AR-null prostate cancer cell lines (PC3 and DU145). Both Jazz90 and Jazz167 inhibited the growth of PC3 and DU145 cells. Jazz90 and Jazz167 were more active in PC3 cells and DU145 cells in comparison to normal prostate cells (PNT1A) and showed a 2.45- and 1.30-fold selectivity and higher cytotoxicity toward DU145 cells, respectively. Jazz90 and Jazz167 reduced HDAC activity by ~60% at 50 nM in PC3 lysates. At 4 μM, Jazz90 and Jazz167 increased acetylation in PC3 cells by 6- to 8-fold. Flow cytometry studies on the cell phase distribution demonstrated that Jazz90 causes a G0/G1 arrest in AR-null cells, whereas Jazz167 leads to a G0/G1 arrest in DU145 cells. However, apoptosis only occurred at a maximum of 7% of the total cell population following compound treatments in PC3 and DU145 cells. There was a reduction in cyclin D1 and no significant changes in bcl-2 in DU145 and PC3 cells. Overall, the results showed that Jazz90 and Jazz167 function as cytostatic HDAC inhibitors in AR-null prostate cancer cells.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 449
Author(s):  
Simin D. Rezaei ◽  
Joshua A. Hayward ◽  
Sam Norden ◽  
John Pedersen ◽  
John Mills ◽  
...  

Heightened expression of human endogenous retrovirus (HERV) sequences has been associated with a range of malignancies, including prostate cancer, suggesting that they may serve as useful diagnostic or prognostic cancer biomarkers. We analysed the expression of HERV-K (Gag and Env/Np9 regions), HERV-E 4.1 (Pol and Env regions), HERV-H (Pol) and HERV-W (Gag) sequences in prostate cancer cells lines and normal prostate epithelial cells using qRT-PCR. HERV expression was also analysed in matched malignant and benign prostate tissue samples from men with prostate cancer (n = 27, median age 65.2 years (range 47–70)) and compared to prostate cancer-free male controls (n = 11). Prostate cancer epithelial cell lines exhibited a signature of HERV RNA overexpression, with all HERVs analysed, except HERV-E Pol, showing heightened expression in at least two, but more commonly all, cell lines analysed. Analysis of primary prostate material indicated increased expression of HERV-E Pol but decreased expression of HERV-E Env in both malignant and benign regions of the prostate in men with prostate cancer as compared to those without. Expression of HERV-K Gag was significantly higher in malignant regions of the prostate in men with prostate cancer as compared to matched benign regions and prostate cancer-free men (p < 0.001 for both), with 85.2% of prostate cancers donors showing malignancy-associated upregulation of HERV-K Gag RNA. HERV-K Gag protein was detected in 12/18 (66.7%) malignant tissues using immunohistochemistry, but only 1/18 (5.6%) benign tissue sections. Heightened expression of HERV-K Gag RNA and protein appears to be a sensitive and specific biomarker of prostate malignancy in this cohort of men with prostate carcinoma, supporting its potential utility as a non-invasive, adjunct clinical biomarker.


2020 ◽  
Vol 65 (2) ◽  
pp. R19-R33
Author(s):  
Dimitrios Doultsinos ◽  
Ian Mills

Prostate cancer is a high-incidence male cancer, which is dependent on the activity of a nuclear hormone receptor, the androgen receptor (AR). Since the AR is required for both normal prostate gland development and for prostate cancer progression, it is possible that prostate cancer evolves from perturbations in AR-dependent biological processes that sustain specialist glandular functions. The archetypal example of course is the use of prostate specific antigen (PSA), an organ-type specific component of the normal prostate secretome, as a biomarker of prostate cancer. Furthermore, localised prostate cancer is characterised by a low proliferative index and a heterogenous array of somatic mutations aligned to a multifocal disease pattern. We and others have identified a number of biological processes that are AR dependent and represent aberrations in significant glandular processes. Glands are characterised by high rates of metabolic activity including protein synthesis supported by co-dependent processes such as glycosylation, organelle biogenesis and vesicle trafficking. Impairments in anabolic metabolism and in protein folding/processing will inevitably impose proteotoxic and oxidative stress on glandular cells and, in particular, luminal epithelial cells for which secretion is their primary function. As cancer develops there is also significant metabolic dysregulation including impaired negative feedback effects on glycolytic and anabolic activity under conditions of hypoxia and heightened protein synthesis due to dysregulated PI 3-kinase/mTOR activity. In this review we will focus on the components of the AR regulome that support cancer development as well as glandular functions focussing on the unfolded protein response and on regulators of mTOR activity.


2020 ◽  
Vol 21 (18) ◽  
pp. 6622
Author(s):  
Kah Ni Tan ◽  
Vicky M. Avery ◽  
Catalina Carrasco-Pozo

Androgen receptor (AR)-mediated signaling is essential for the growth and differentiation of the normal prostate and is the primary target for androgen deprivation therapy in prostate cancer. Tat interactive protein 60 kDa (Tip60) is a histone acetyltransferase that is critical for AR activation. It is well known that cancer cells rewire their metabolic pathways in order to sustain aberrant proliferation. Growing evidence demonstrates that the AR and Tip60 modulate key metabolic processes to promote the survival of prostate cancer cells, in addition to their classical roles. AR activation enhances glucose metabolism, including glycolysis, tricarboxylic acid cycle and oxidative phosphorylation, as well as lipid metabolism in prostate cancer. The AR also interacts with other metabolic regulators, including calcium/calmodulin-dependent kinase kinase 2 and mammalian target of rapamycin. Several studies have revealed the roles of Tip60 in determining cell fate indirectly by modulating metabolic regulators, such as c-Myc, hypoxia inducible factor 1α (HIF-1α) and p53 in various cancer types. Furthermore, Tip60 has been shown to regulate the activity of key enzymes in gluconeogenesis and glycolysis directly through acetylation. Overall, both the AR and Tip60 are master metabolic regulators that mediate cellular energy metabolism in prostate cancer, providing a framework for the development of novel therapeutic targets in androgen-dependent prostate cancer.


Endocrinology ◽  
2018 ◽  
Vol 159 (4) ◽  
pp. 1774-1792 ◽  
Author(s):  
Takako Kawanami ◽  
Tomoko Tanaka ◽  
Yuriko Hamaguchi ◽  
Takashi Nomiyama ◽  
Hajime Nawata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document