BAP1: The first mutated gene causing familial uveal melanoma.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10521-10521
Author(s):  
Johan Hansson ◽  
Charlotta All-Eriksson ◽  
Hildur Helgadottir ◽  
Daniel Edsgard ◽  
Rainer Tuominen ◽  
...  

10521 Background: Uveal melanoma (UM) is a rare malignancy with a poor prognosis. Familial predisposition to UM is rare and accounts for only a few percent of all cases. The genetic background of hereditary UM is unknown and the aim of our project was to identify susceptibility gene(s) for UM. Methods: We identified a family with hereditary predisposition for UM – the proband of which is a young female diagnosed with UM at age 16 who within 6 months developed liver metastases. We also identified two older paternal relatives who were diagnosed with UM at 39 and 44 years of age, respectively. We performed massively parallel sequencing using the Illumina Hiseq2000 technology on germline DNA from the proband, her parents and a healthy sibling. After QC and mapping against the human reference genome the average coverage across the exome was between 35 and 86 for the four sequenced samples. Results: Out of more than 260,000 single nucleotide variants (SNVs) and small insertion / deletion variants (indels), 51 gene variants were filtered out by being novel, shared by the affected proband and her father (considered an obligate mutation carrier), but not by the healthy mother, of predicted functional importance and /or located within strongly conserved regions. The strongest candidate among these was a loss of function-variant in the BAP1 gene, since BAP1 has been suggested as a tumor suppressor in several cancer-related syndromes, including cases of UM. The sequence data indicated an insertion of one base-pair in exon 3 of the BAP1 genecausing a frame-shift and subsequently a truncated protein lacking all its functional domains. The mutation was also present in UM tumor tissue from the two deceased paternal relatives and was found to segregate with the UM phenotype in the family. We also detected loss of heterozygosity in the tumor of the proband, supporting BAP1 as the causative gene in this family. Conclusions: The identification of BAP1 as the gene responsible for this syndrome is the first demonstration of a germline mutation causing UM. This enables us to identify and monitor risk individuals belonging to mutation positive families with predisposition to UM, and possibly other cancer syndromes. We are continuously screening other cases of familial UM for mutations in BAP1.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2704
Author(s):  
Sally Yepes ◽  
Nirav N. Shah ◽  
Jiwei Bai ◽  
Hela Koka ◽  
Chuzhong Li ◽  
...  

Background: Chordoma is a rare bone cancer with an unknown etiology. TBXT is the only chordoma susceptibility gene identified to date; germline single nucleotide variants and copy number variants in TBXT have been associated with chordoma susceptibility in familial and sporadic chordoma. However, the genetic susceptibility of chordoma remains largely unknown. In this study, we investigated rare germline genetic variants in genes involved in TBXT/chordoma-related signaling pathways and other biological processes in chordoma patients from North America and China. Methods: We identified variants that were very rare in general population and internal control datasets and showed evidence for pathogenicity in 265 genes in a whole exome sequencing (WES) dataset of 138 chordoma patients of European ancestry and in a whole genome sequencing (WGS) dataset of 80 Chinese patients with skull base chordoma. Results: Rare and likely pathogenic variants were identified in 32 of 138 European ancestry patients (23%), including genes that are part of notochord development, PI3K/AKT/mTOR, Sonic Hedgehog, SWI/SNF complex and mesoderm development pathways. Rare pathogenic variants in COL2A1, EXT1, PDK1, LRP2, TBXT and TSC2, among others, were also observed in Chinese patients. Conclusion: We identified several rare loss-of-function and predicted deleterious missense variants in germline DNA from patients with chordoma, which may influence chordoma predisposition and reflect a complex susceptibility, warranting further investigation in large studies.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 899 ◽  
Author(s):  
Aida Orois ◽  
Sudheer K. Gara ◽  
Mireia Mora ◽  
Irene Halperin ◽  
Sandra Martínez ◽  
...  

Nonsyndromic familial non-medullary thyroid cancer (FNMTC) represents 3–9% of thyroid cancers, but the susceptibility gene(s) remain unknown. We designed this multicenter study to analyze families with nonsyndromic FNMTC and identify candidate susceptibility genes. We performed exome sequencing of DNA from four affected individuals from one kindred, with five cases of nonsyndromic FNMTC. Single Nucleotide Variants, and insertions and deletions that segregated with all the affected members, were analyzed by Sanger sequencing in 44 additional families with FNMTC (37 with two affected members, and seven with three or more affected members), as well as in an independent control group of 100 subjects. We identified the germline variant p. Asp31His in NOP53 gene (rs78530808, MAF 1.8%) present in all affected members in three families with nonsyndromic FNMTC, and not present in unaffected spouses. Our functional studies of NOP53 in thyroid cancer cell lines showed an oncogenic function. Immunohistochemistry exhibited increased NOP53 protein expression in tumor samples from affected family members, compared with normal adjacent thyroid tissue. Given the relatively high frequency of the variant in the general population, these findings suggest that instead of a causative gene, NOP53 is likely a low-penetrant gene implicated in FNMTC, possibly a modifier.


Author(s):  
Pamela Wiener ◽  
Christelle Robert ◽  
Abulgasim Ahbara ◽  
Mazdak Salavati ◽  
Ayele Abebe ◽  
...  

Abstract Great progress has been made over recent years in the identification of selection signatures in the genomes of livestock species. This work has primarily been carried out in commercial breeds for which the dominant selection pressures, are associated with artificial selection. As agriculture and food security are likely to be strongly affected by climate change, a better understanding of environment-imposed selection on agricultural species is warranted. Ethiopia is an ideal setting to investigate environmental adaptation in livestock due to its wide variation in geo-climatic characteristics and the extensive genetic and phenotypic variation of its livestock. Here, we identified over three million single nucleotide variants across 12 Ethiopian sheep populations and applied landscape genomics approaches to investigate the association between these variants and environmental variables. Our results suggest that environmental adaptation for precipitation-related variables is stronger than that related to altitude or temperature, consistent with large-scale meta-analyses of selection pressure across species. The set of genes showing association with environmental variables was enriched for genes highly expressed in human blood and nerve tissues. There was also evidence of enrichment for genes associated with high-altitude adaptation although no strong association was identified with hypoxia-inducible-factor (HIF) genes. One of the strongest altitude-related signals was for a collagen gene, consistent with previous studies of high-altitude adaptation. Several altitude-associated genes also showed evidence of adaptation with temperature, suggesting a relationship between responses to these environmental factors. These results provide a foundation to investigate further the effects of climatic variables on small ruminant populations.


2017 ◽  
Vol 24 (10) ◽  
pp. T195-T208 ◽  
Author(s):  
Rami Alrezk ◽  
Fady Hannah-Shmouni ◽  
Constantine A Stratakis

Multiple endocrine neoplasia (MEN) refers to a group of autosomal dominant disorders with generally high penetrance that lead to the development of a wide spectrum of endocrine and non-endocrine manifestations. The most frequent among these conditions is MEN type 1 (MEN1), which is caused by germline heterozygous loss-of-function mutations in the tumor suppressor geneMEN1. MEN1 is characterized by primary hyperparathyroidism (PHPT) and functional or nonfunctional pancreatic neuroendocrine tumors and pituitary adenomas. Approximately 10% of patients with familial or sporadic MEN1-like phenotype do not haveMEN1mutations or deletions. A novel MEN syndrome was discovered, initially in rats (MENX), and later in humans (MEN4), which is caused by germline mutations in the putative tumor suppressorCDKN1B. The most common phenotype of the 19 established cases of MEN4 that have been described to date is PHPT followed by pituitary adenomas. Recently, somatic or germline mutations inCDKN1Bwere also identified in patients with sporadic PHPT, small intestinal neuroendocrine tumors, lymphoma and breast cancer, demonstrating a novel role forCDKN1Bas a tumor susceptibility gene for other neoplasms. In this review, we report on the genetic characterization and clinical features of MEN4.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
François Lebreton ◽  
Willem van Schaik ◽  
Abigail Manson McGuire ◽  
Paul Godfrey ◽  
Allison Griggs ◽  
...  

ABSTRACTEnterococcus faecium, natively a gut commensal organism, emerged as a leading cause of multidrug-resistant hospital-acquired infection in the 1980s. As the living record of its adaptation to changes in habitat, we sequenced the genomes of 51 strains, isolated from various ecological environments, to understand howE. faeciumemerged as a leading hospital pathogen. Because of the scale and diversity of the sampled strains, we were able to resolve the lineage responsible for epidemic, multidrug-resistant human infection from other strains and to measure the evolutionary distances between groups. We found that the epidemic hospital-adapted lineage is rapidly evolving and emerged approximately 75 years ago, concomitant with the introduction of antibiotics, from a population that included the majority of animal strains, and not from human commensal lines. We further found that the lineage that included most strains of animal origin diverged from the main human commensal line approximately 3,000 years ago, a time that corresponds to increasing urbanization of humans, development of hygienic practices, and domestication of animals, which we speculate contributed to their ecological separation. Each bifurcation was accompanied by the acquisition of new metabolic capabilities and colonization traits on mobile elements and the loss of function and genome remodeling associated with mobile element insertion and movement. As a result, diversity within the species, in terms of sequence divergence as well as gene content, spans a range usually associated with speciation.IMPORTANCEEnterococci, in particular vancomycin-resistantEnterococcus faecium, recently emerged as a leading cause of hospital-acquired infection worldwide. In this study, we examined genome sequence data to understand the bacterial adaptations that accompanied this transformation from microbes that existed for eons as members of host microbiota. We observed changes in the genomes that paralleled changes in human behavior. An initial bifurcation within the species appears to have occurred at a time that corresponds to the urbanization of humans and domestication of animals, and a more recent bifurcation parallels the introduction of antibiotics in medicine and agriculture. In response to the opportunity to fill niches associated with changes in human activity, a rapidly evolving lineage emerged, a lineage responsible for the vast majority of multidrug-resistantE. faeciuminfections.


2020 ◽  
Author(s):  
Malgorzata Ostrowska ◽  
Justyna Podlodowska ◽  
Jadwiga Sierocinska-Sawa ◽  
Jacek Wojcierowski

Abstract Background: Determination of the BRCA1/BRCA2 mutation status in patients with breast and/or ovarian cancer is commonly performed using various molecular techniques. The use only of targeted PCR-based tests may not be sufficient, as not all possible variants are investigated. Quick and effective diagnosis in order to apply the appropriate treatment is extremely important. In the following study, we used next generation sequencing (NGS) techniques to identify novel pathogenic variants in BRCA1 and BRCA2. Methods: In this study, material (blood and FFPE) collected from a 67-year-old patient with ovarian cancer was used. The presence of hereditary mutations characteristic for the Polish population was examined using Sanger sequencing. BRCA1 and BRCA2 gene exons were amplified using the Devyser BRCA kit and sequenced on the Miniseq.Results: No germline mutations characteristic for the Polish population were detected. However,12 single nucleotide variants and 2 indels were identified. We found a new deleterious mutation of gene BRCA1 (c.829_832delAATA). To our knowledge, this mutation has not been reported yet in the Polish population and others. Conclusions: The use of the NGS technique increases the possibilities of detecting mutational changes in patients with ovarian and/or breast cancer. The frequency of somatic mutations in ovarian tumors is low (3% - 9%) but their detection may have therapeutic benefits due to the use of poly(adenosine diphosphate)-ribose polymerase (PARP) inhibitors. Quick determination of pathogenic variants is important to facilitate specific therapy in addition to the identification of familial predisposition to cancer.


2020 ◽  
pp. jmedgenet-2020-106925
Author(s):  
Pingping Song ◽  
Yuqing Guan ◽  
Xia Chen ◽  
Chaochen Wu ◽  
An Qiao ◽  
...  

BackgroundDeafness-dystonia-optic neuronopathy (DDON) syndrome is a progressive X-linked recessive disorder characterised by deafness, dystonia, ataxia and reduced visual acuity. The causative gene deafness/dystonia protein 1 (DDP1)/translocase of the inner membrane 8A (TIMM8A) encodes a mitochondrial intermembrane space chaperon. The molecular mechanism of DDON remains unclear, and detailed information on animal models has not been reported yet.Methods and resultsWe characterized a family with DDON syndrome, in which the affected members carried a novel hemizygous variation in the DDP1 gene (NM_004085.3, c.82C>T, p.Q28X). We then generated a mouse line with the hemizygous mutation (p.I23fs49X) in the Timm8a1 gene using the clustered regularly interspaced short palindromic repeats /Cas9 technology. The deficient DDP1 protein was confirmed by western blot assay. Electron microscopic analysis of brain samples from the mutant mice indicated abnormal mitochondrial structure in several brain areas. However, Timm8a1I23fs49X/y mutation did not affect the import of mitochondria inner member protein Tim23 and outer member protein Tom40 as well as the biogenesis of the proteins in the mitochondrial oxidative phosphorylation system and the manganese superoxide dismutase (MnSOD / SOD-2). The male mice with Timm8a1I23fs49X/y mutant exhibited less weight gain, hearing impairment and cognitive deficit.ConclusionOur study suggests that frameshift mutation of the Timm8a1 gene in mice leads to an abnormal mitochondrial structure in the brain, correlating with hearing and memory impairment. Taken together, we have successfully generated a mouse model bearing loss-of-function mutation in Timm8a1.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Iga Jancewicz ◽  
Janusz A. Siedlecki ◽  
Tomasz J. Sarnowski ◽  
Elzbieta Sarnowska

Abstract BRM (BRAHMA) is a core, SWI2/SNF2-type ATPase subunit of SWI/SNF chromatin-remodelling complex (CRC) involved in various important regulatory processes including development. Mutations in SMARCA2, a BRM-encoding gene as well as overexpression or epigenetic silencing were found in various human diseases including cancer. Missense mutations in SMARCA2 gene were recently connected with occurrence of Nicolaides–Baraitser genetics syndrome. By contrast, SMARCA2 duplication rather than mutations is characteristic for Coffin–Siris syndrome. It is believed that BRM usually acts as a tumour suppressor or a tumour susceptibility gene. However, other studies provided evidence that BRM function may differ depending on the cancer type and the disease stage, where BRM may play a role in the disease progression. The existence of alternative splicing forms of SMARCA2 gene, leading to appearance of truncated functional, loss of function or gain-of-function forms of BRM protein suggest a far more complicated mode of BRM-containing SWI/SNF CRCs actions. Therefore, the summary of recent knowledge regarding BRM alteration in various types of cancer and highlighting of differences and commonalities between BRM and BRG1, another SWI2/SNF2 type ATPase, will lead to better understanding of SWI/SNF CRCs function in cancer development/progression. BRM has been recently proposed as an attractive target for various anticancer therapies including the use of small molecule inhibitors, synthetic lethality induction or proteolysis-targeting chimera (PROTAC). However, such attempts have some limitations and may lead to severe side effects given the homology of BRM ATPase domain to other ATPases, as well as due to the tissue-specific appearance of BRM- and BRG1-containing SWI/SNF CRC classes. Thus, a better insight into BRM-containing SWI/SNF CRCs function in human tissues and cancers is clearly required to provide a solid basis for establishment of new safe anticancer therapies.


2020 ◽  
pp. jmedgenet-2020-107042
Author(s):  
Chencheng Yao ◽  
Chao Yang ◽  
Liangyu Zhao ◽  
Peng Li ◽  
Ruhui Tian ◽  
...  

BackgroundThe genetic causes of human idiopathic non-obstructive azoospermia (NOA) with meiotic arrest remain unclear.MethodsTwo Chinese families with infertility participated in the study. In family 1, two brothers were affected by idiopathic NOA. In family 2, the proband was diagnosed with idiopathic NOA, and his elder sister suffered from infertility. Whole-exome sequencing (WES) was conducted in the two patients in family 1, the proband in family 2 and 362 additional sporadic patients with idiopathic NOA. Sanger sequencing was used to verify the WES results. Periodic acid–Schiff (PAS), immunohistochemistry (IHC) and meiotic chromosomal spread analyses were carried out to evaluate the stage of spermatogenesis arrested in the affected cases.ResultsWe identified compound heterozygous loss of function (LoF) variants of SHOC1 (c.C1582T:p.R528X and c.231_232del:p.L78Sfs*9, respectively) in both affected cases with NOA from family 1. In family 2, homozygous LoF variant in SHOC1 (c.1194delA:p.L400Cfs*7) was identified in the siblings with infertility. PAS, IHC and meiotic chromosomal spread analyses demonstrated that the spermatogenesis was arrested at zygotene stage in the three patients with NOA. Consistent with the autosomal recessive mode of inheritance, all of these SHOC1 variants were inherited from heterozygous parental carriers. Intriguingly, WES of 362 sporadic NOA cases revealed one additional NOA case with a bi-allelic SHOC1 LoF variant (c.1464delT:p.D489Tfs*13).ConclusionTo the best of our knowledge, this is the first report identifying SHOC1 as the causative gene for human NOA. Furthermore, our study showed an autosomal recessive mode of inheritance in the NOA caused by SHOC1 deficiency.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yinsen Song ◽  
Zhengping Dong ◽  
Shuying Luo ◽  
Junmei Yang ◽  
Yuebing Lu ◽  
...  

Abstract Background Chediak-Higashi Syndrome (CHS) is a rare autosomal recessive disease caused by loss of function of the lysosomal trafficking regulator protein. The causative gene LYST/CHS1 was cloned and identified in 1996, which showed significant homology to other species such as bovine and mouse. To date, 74 pathogenic or likely pathogenic mutations had been reported. Case presentation Here we describe a compound heterozygote in LYST gene, which was identified in a 4-year-old female patient. The patient showed skin hypopigmentation, sensitivity to light, mild splenomegaly and reduction of platelets in clinical examination. Giant intracytoplasmic inclusions were observed in the bone marrow examination, suggesting the diagnosis of CHS. Amplicon sequencing was performed to detect pathogenic mutation in LYST gene. The result was confirmed by two-generation pedigree analysis base on sanger sequencing. Conclusion A compound heterozygote in LYST gene, consisting of a missense mutation c.5719A > G and an intron mutation c.4863-4G > A, was identified from the patient by using amplicon sequencing. The missense mutation is reported for the first time. Two-generation pedigree analysis showed these two mutations were inherited from the patient’s parents, respectively. Our result demonstrated that amplicon sequencing has great potential for accelerating and improving the diagnosis of rare genetic diseases.


Sign in / Sign up

Export Citation Format

Share Document