Suppression of apoptosis by BRAF inhibitors through off-target inhibition of JNK signaling.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 8537-8537 ◽  
Author(s):  
Kenneth Yee Tsai ◽  
Harina Vin ◽  
Marco Leung ◽  
Vida Chitsazzadeh ◽  
Sandra Ojeda ◽  
...  

8537 Background: The advent of targeted therapy has revolutionized the treatment of cancer. The mutant BRAFV600E protein is found in over 50% of melanomas and thyroid carcinomas, resulting in elevated kinase activity, increased mitogen-activated protein kinase (MAPK) pathway signaling, and cell proliferation. Vemurafenib and PLX4720 were designed to selectively inhibit the BRAF kinase, and clinical trials of vemurafenib in metastatic melanoma have demonstrated a response rate of over 50% and an overall survival advantage over standard dacarbazine therapy. Approximately 20-30% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) highlighting the importance of understanding toxicities associated with this drug. Paradoxical ERK activation in BRAF wild-type, RAS-mutant cells is thought to be the major mechanism by which this occurs, as evidenced by the presence of RAS mutations in 60% of such lesions. Methods: Using a combination of BRAF-wild-type cSCC cell lines, primary human keratinocytes, as well as a UV mouse model of cSCC and human cSCC samples, we identified novel effects of BRAFi on apoptosis. Results: Here we show an unexpected and novel effect of vemurafenib and PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases. JNK signaling and apoptosis are suppressed in cSCC lesions arising in vemurafenib-treated patients as well as in irradiated mouse skin. This occurs independently of paradoxical ERK signaling and in the presence of MEK inhibitor. Treatment with PLX4720 greatly accelerates the development of UV-induced cSCC in mice without Ras mutations. Kinome screening identified ZAK and MKK4 (MEK4 / MAP2K4) kinases as inhibited by vemurafenib, leading to suppression of MKK4 and MKK7 (MAP2K7) phosphorylation. Knockdown of inhibited off-target kinases recapitulates these anti-apoptotic effects of vemurafenib. Conclusions: Our results implicate suppression of JNK signaling, independent of ERK activation, as an additional, complementary mechanism of adverse effects of vemurafenib. This has broad implications for combination therapies with other modalities that induce apoptosis and for the long-term use of vemurafenib in the adjuvant setting.

1997 ◽  
Vol 17 (9) ◽  
pp. 4991-5000 ◽  
Author(s):  
M C Rouyez ◽  
C Boucheron ◽  
S Gisselbrecht ◽  
I Dusanter-Fourt ◽  
F Porteu

Thrombopoietin (TPO) is the major regulator of both growth and differentiation of megakaryocytes. We previously showed that both functions can be generated by TPO in the megakaryoblastic cell line UT7, in which murine Mpl was introduced, and are independently controlled by distinct regions of the cytoplasmic domain of Mpl. Particularly, residues 71 to 94 of this domain (deleted in the mutant mpl delta3) were found to be required for megakaryocytic maturation but dispensable for proliferation. We show here that TPO-induced differentiation in UT7 cells is tightly dependent on a strong, long-lasting activation of the mitogen-activated protein kinase (MAPK) pathway. Indeed, (i) in UT7-mpl cells, TPO induced a strong activation of extracellular signal-regulated kinases (ERK) which was persistent until at least 4 days in TPO-containing medium; (ii) a specific MAPK kinase (MEK) inhibitor inhibited TPO-induced megakaryocytic gene expression; (iii) the Mpl mutant mpl delta3, which displayed no maturation activity, transduced only a weak and transient ERK activation in UT7 cells; and (iv) TPO-induced megakaryocytic differentiation in UT7-mpl delta3 cells was partially restored by expression of a constitutively activated mutant of MEK. The capacity of TPO to trigger a strong and prolonged MAPK signal depended on the cell in which Mpl was introduced. In BAF3-mpl cells, TPO triggered a weak and transient ERK activation, similar to that induced in UT7-mpl delta3 cells. In these cells, no difference in MAPK activation was found between normal Mpl and mpl delta3. Thus, depending on the cellular context, several distinct regions of the cytoplasmic domain of Mpl and signaling pathways may contribute to generate quantitative variations in MAPK activation.


2021 ◽  
Author(s):  
Shinsuke Oda ◽  
Masayoshi Fujisawa ◽  
Li Chunning ◽  
Toshihiro Ito ◽  
Takahiro Yamaguchi ◽  
...  

Aberrant activation of the Ras/Raf/ERK (extracellular-signal-regulated kinase)-MAPK (mitogen-activated protein kinase) pathway is involved in the progression of cancer, including urothelial carcinoma; but the negative regulation remains unclear. In the present study, we investigated pathological expression of Spred2 (Sprouty-related EVH1 domain-containing protein 2), a negative regulator of the Ras/Raf/ERK-MAPK pathway, and the relation to ERK activation and Ki67 index in various categories of 275 urothelial tumors obtained from clinical patients. In situ hybridization demonstrated that Spred2 mRNA was highly expressed in high-grade non-invasive papillary urothelial carcinoma (HGPUC), and the expression was decreased in carcinoma in situ (CIS) and infiltrating urothelial carcinoma (IUC). Immunohistochemically, membranous Spred2 expression, important to interact with Ras/Raf, was preferentially found in HGPUC. Interestingly, membranous Spred2 expression was decreased in CIS and IUC relative to HGPUC, while ERK activation and the expression of the cell proliferation marker Ki67 index were increased. HGPUC with membranous Spred2 expression correlated significantly with lower levels of ERK activation and Ki67 index as compared to those with negative Spred2 expression. Thus, our pathological findings suggest that Spred2 negatively regulates cancer progression in non-invasive papillary carcinoma possibly through inhibiting the Ras/Raf/ERK-MAPK pathway, but this regulatory mechanism is lost in cancers with high malignancy. Spred2 appears to be a key regulator in the progression of non-invasive bladder carcinoma.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 537-553 ◽  
Author(s):  
Angel Wai-mun Lee

Abstract Colony-stimulating factors (CSFs) promote the proliferation, differentiation, commitment, and survival of myeloid progenitors, whereas cyclic AMP (cAMP)-mediated signals frequently induce their growth arrest and apoptosis. The ERK/mitogen-activated protein kinase (MAPK) pathway is a target for both CSFs and cAMP. We investigated how costimulation by cAMP and colony-stimulating factor-1 (CSF-1) or interleukin-3 (IL-3) modulates MAPK in the myeloid progenitor cell line, 32D. cAMP dramatically increased ERK activity in the presence of CSF-1 or IL-3. IL-3 also synergized with cAMP to activate ERK in another myeloid cell line, FDC-P1. The increase in ERK activity was transmitted to a downstream target, p90rsk. cAMP treatment of 32D cells transfected with oncogenic Ras was found to recapitulate the superactivation of ERK seen with cAMP and CSF-1 or IL-3. ERK activation in the presence of cAMP did not appear to involve any of the Raf isoforms and was blocked by expression of dominant-negative MEK1 or treatment with a MEK inhibitor, PD98059. Although cAMP had an overall inhibitory effect on CSF-1–mediated proliferation and survival, the inhibition was markedly increased if ERK activation was blocked by PD98059. These findings suggest that upregulation of the ERK pathway is one mechanism induced by CSF-1 and IL-3 to protect myeloid progenitors from the growth-suppressive and apoptosis-inducing effects of cAMP elevations.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2253
Author(s):  
Shomereeta Roy ◽  
Audrey Laroche-Clary ◽  
Stephanie Verbeke ◽  
Marie-Alix Derieppe ◽  
Antoine Italiano

The MDM2 gene is amplified in dedifferentiated liposarcoma (DDLPS). Treatment with MDM2 antagonists is a promising strategy to treat DDLPS; however, drug resistance is a major limitation when these drugs are used as a single agent. This study examined the impact of MDM2 antagonists on the mitogen-activated protein kinase (MAPK) pathway in DDLPS and investigated the potential synergistic activity of a MAPK kinase (MEK) inhibitor in combination with MDM2 antagonists. We identified a synergistic effect and identified the mechanism behind it. Combination effects of MDM2 antagonists and a MEK inhibitor were analyzed in a patient-derived xenograft mouse model and in DDLPS and leiomyosarcoma cell lines using different cell proliferation assays and immunoblot analysis. MDM2 antagonist (RG7388)-resistant IB115 [P4] cells and p53-silenced DDLPS cells were also established to understand the importance of functional p53. We found that MDM2 antagonists induced an upregulation of phosphorylated extracellular signal-regulated kinase (p-ERK) in DDLPS cells. The upregulation of p-ERK occurred due to mitochondrial translocation of p53, which resulted in increased production of reactive oxygen species, causing the activation of receptor tyrosine kinases (RTKs). Activated RTKs led to the activation of the downstream MEK/ERK signaling pathway. Treatment with a MEK inhibitor resulted in decreased expression of p-ERK, causing significant anti-tumor synergy when combined with MDM2 antagonists. Our results provide a framework for designing clinical studies of combination therapies in DDLPS patients.


Author(s):  
Ryan Sullivan ◽  
Patricia LoRusso ◽  
Scott Boerner ◽  
Reinhard Dummer

The treatment of melanoma has been revolutionized over the past decade with the development of effective molecular and immune targeted therapies. The great majority of patients with melanoma have mutations in oncogenes that predominantly drive signaling through the mitogen activated protein kinase (MAPK) pathway. Analytic tools have been developed that can effectively stratify patients into molecular subsets based on the identification of mutations in oncogenes and/or tumor suppressor genes that drive the MAPK pathway. At the same time, potent and selective inhibitors of mediators of the MAPK pathway such as RAF, MEK, and ERK have become available. The most dramatic example is the development of single-agent inhibitors of BRAF (vemurafenib, dabrafenib, encorafenib) and MEK (trametinib, cobimetinib, binimetinib) for patients with metastatic BRAFV600-mutant melanoma, a subset that represents 40% to 50% of patients with metastatic melanoma. More recently, the elucidation of mechanisms underlying resistance to single-agent BRAF inhibitor therapy led to a second generation of trials that demonstrated the superiority of BRAF inhibitor/MEK inhibitor combinations (dabrafenib/trametinib; vemurafenib/cobimetinib) compared to single-agent BRAF inhibitors. Moving beyond BRAFV600targeting, a number of other molecular subsets—such as mutations in MEK, NRAS, and non-V600 BRAF and loss of function of the tumor suppressor neurofibromatosis 1 ( NF1)—are predicted to respond to MAPK pathway targeting by single-agent pan-RAF, MEK, or ERK inhibitors. As these strategies are being tested in clinical trials, preclinical and early clinical trial data are now emerging about which combinatorial approaches might be best for these patients.


2004 ◽  
Vol 287 (4) ◽  
pp. E758-E766 ◽  
Author(s):  
Anne W. Harmon ◽  
David S. Paul ◽  
Yashomati M. Patel

In 3T3-L1 adipocytes, insulin activates three major signaling cascades, the phosphoinositide 3-kinase (PI3K) pathway, the Cbl pathway, and the mitogen-activated protein kinase (MAPK) pathway. Although PI3K and Cbl mediate insulin-stimulated glucose uptake by promoting the translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane, the MAPK pathway does not have an established role in insulin-stimulated glucose uptake. We demonstrate in this report that PI3K inhibitors also inhibit the MAPK pathway. To investigate the role of the MAPK pathway separately from that of the PI3K pathway in insulin-stimulated glucose uptake, we used two specific inhibitors of MAPK kinase (MEK) activity, PD-98059 and U-0126, which reduced insulin-stimulated glucose uptake by ∼33 and 50%, respectively. Neither MEK inhibitor affected the activation of Akt or PKCζ/λ, downstream signaling molecules in the PI3K pathway. Inhibition of MEK with U-0126 did not prevent GLUT4 from translocating to the plasma membrane, nor did it inhibit the subsequent docking and fusion of GLUT4- myc with the plasma membrane. MEK inhibitors affected glucose transport mediated by GLUT4 but not GLUT1. Importantly, the presence of MEK inhibitors only at the time of the transport assay markedly impaired both insulin-stimulated glucose uptake and MAPK signaling. Conversely, removal of MEK inhibitors before the transport assay restored glucose uptake and MAPK signaling. Collectively, our studies suggest a possible role for MEK in the activation of GLUT4.


1998 ◽  
Vol 187 (9) ◽  
pp. 1417-1426 ◽  
Author(s):  
Julie A. Frearson ◽  
Denis R. Alexander

Src homology 2 (SH2) domain–containing phosphotyrosine phosphatases (SHPs) are increasingly being shown to play critical roles in protein tyrosine kinase–mediated signaling pathways. The role of SHP-1 as a negative regulator of T cell receptor (TCR) signaling has been established. To further explore the function of the other member of this family, SHP-2, in TCR-mediated events, a catalytically inactive mutant SHP-2 was expressed under an inducible promoter in Jurkat T cells. Expression of the mutant phosphatase significantly inhibited TCR-induced activation of the extracellular-regulated kinase (ERK)-2 member of the mitogen-activated protein kinase (MAPK) family, but had no effect on TCR-ζ chain tyrosine phosphorylation or TCR-elicited Ca2+ transients. Inactive SHP-2 was targeted to membranes resulting in the selective increase in tyrosine phosphorylation of three membrane-associated candidate SHP-2 substrates of 110 kD, 55-60 kD, and 36 kD, respectively. Analysis of immunoprecipitates containing inactive SHP-2 also indicated that the 110-kD and 36-kD Grb-2–associated proteins were putative substrates for SHP-2. TCR-stimulation of Jurkat T cells expressing wild-type SHP-2 resulted in the formation of a multimeric cytosolic complex composed of SHP-2, Grb-2, phosphatidylinositol (PI) 3′-kinase, and p110. A significant proportion of this complex was shown to be membrane associated, presumably as a result of translocation from the cytosol. Catalytically inactive SHP-2, rather than the wild-type PTPase, was preferentially localized in complex with Grb-2 and the p85 subunit of PI 3′-kinase, suggesting that the dephosphorylating actions of SHP-2 may regulate the association of these signaling molecules to the p110 complex. Our results show that SHP-2 plays a critical role in linking the TCR to the Ras/MAPK pathway in Jurkat T cells, and also provide some insight into the molecular interactions of SHP-2 that form the basis of this signal transduction process.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi3-vi3
Author(s):  
Jo Sasame ◽  
Naoki Ikegaya ◽  
Yohei Miyake ◽  
Takahiro Hayashi ◽  
Akito Oshima ◽  
...  

Abstract The BRAFV600E mutation results in the constitutive activation of downstream mitogen activated protein kinase (MAPK) pathway that promotes tumor growth. Recently, molecular targeted therapy using BRAF/MEK inhibitor has been reported for BRAFV600E mutant high-grade glioma, but the therapeutic effect is limited by the emergence of drug resistance. Herein, we established paired BRAFV600E mutant glioblastoma (GBM) patient-derived xenograft (PDX) models, which were derived from tumors at prior to and recurrence after molecular targeted therapy. These PDX models were found to extensively recapitulate the histology, genetic abnormalities, and even the clinical course of the patients. Furthermore, BRAF/MEK inhibitor gradually caused resistance in cell lines derived from specimens that initially responded to molecular targeted therapy. In this study, genomic and epigenomic changes had little effect on the resistance mechanism. On the other hand, we found that hyperactivation of the MAPK pathway through c-Raf and the AKT/mTOR pathway primarily caused resistance to molecular targeted therapy in BRAFV600E mutant GBM. Through a high throughput drug screening, we find that HSP90 inhibitor with BRAF/MEK inhibitor coordinately deactivates MAPK pathway and AKT/mTOR pathway, and mediates potent toxicity in vitro and in vivo in refractory and acquired resistant models. These findings support that this therapeutic approach can overcome the limitation of current molecular targeted therapy in BRAFV600E mutant GBM.


2017 ◽  
Author(s):  
Marco Ranzani ◽  
Kristel Kemper ◽  
Magali Michaut ◽  
Oscar Krijgsman ◽  
Nanne Aben ◽  
...  

AbstractDespite recent therapeutic advances in the management ofBRAFV600-mutant melanoma, there is still a compelling need for more effective treatments for patients who developedBRAF/NRASwild type disease. Since the activity of single targeted agents is limited by innate and acquired resistance, we performed a high-throughput drug screen using 180 drug combinations to generate over 18,000 viability curves, with the aim of identifying agents that synergise to killBRAF/NRASwild type melanoma cells. From this screen we observed strong synergy between the tyrosine kinase inhibitor nilotinib and MEK inhibitors and validated this combination in an independent cell line collection. We found that AXL expression was associated with synergy to the nilotinib/MEK inhibitor combination, and that both drugs work in concert to suppress pERK. This finding was supported by genome-wide CRISPR screening which revealed that resistance mechanisms converge on regulators of the MAPK pathway. Finally, we validated the synergy of nilotinib/trametinib combinationin vivousing patient-derived xenografts. Our results indicate that a nilotinib/MEK inhibitor combination may represent an effective therapy inBRAF/NRASwild type melanoma patients.


Author(s):  
William E. Tidyman ◽  
Alice F. Goodwin ◽  
Yoshiko Maeda ◽  
Ophir D. Klein ◽  
Katherine A. Rauen

Costello syndrome (CS) is a congenital disorder caused by heterozygous activating germline HRAS mutations in the canonical Ras/mitogen-activated protein kinase (Ras/MAPK) pathway. CS is one of the RASopathies, a large group of syndromes due to mutations within various components of the Ras/MAPK pathway. An important part of the phenotype that greatly impacts quality of life is hypotonia. To gain a better understanding of the mechanisms underlying hypotonia in CS, a mouse model with an activating HrasG12V allele was utilized. We identified a skeletal myopathy that was due in part to an inhibition of embryonic myogenesis and myofiber formation, resulting in a reduction of myofiber size and number that led to reduced muscle mass and strength. In addition to hyperactivation of the Ras/MAPK and PI3K/AKT pathways, there was a significant reduction of p38 signaling, as well as global transcriptional alterations consistent with the myopathic phenotype. Inhibition of Ras/MAPK pathway signaling using a MEK inhibitor rescued the HrasG12V myopathy phenotype both in vitro and in vivo, demonstrating that increased MAPK signaling is the main cause of the muscle phenotype in CS.


Sign in / Sign up

Export Citation Format

Share Document