Genome-wide alterations in gene expression of prostate cancer (PC) cells surviving neoadjuvant androgen deprivation therapy (ADT).

2017 ◽  
Vol 35 (6_suppl) ◽  
pp. 88-88
Author(s):  
Anna C. Ferrari ◽  
Ying Chen ◽  
Hatem E. Sabaawy ◽  
Mark N. Stein ◽  
David Foran ◽  
...  

88 Background: Although androgen deprivation therapy initially decreases PC tumor burden, resistance to further androgen receptor (AR)-directed treatments or chemotherapy is inevitable once CRPC is established. We postulated that the stress of ADT triggers widespread alterations in expression that renders a metastable physiologic state conditioned by epigenetic changes that might be initially reversible by targeting non-androgen pathways. We conducted a pilot study to explore genome-wide expression alterations in PC foci surviving 3 months ADT (eADT). Methods: mRNA from 7 frozen microdissected PC foci and normal counterparts (NC) were processed for RNA-seq. RNA-seq changes in eADT specimens were compared first with NC and the untreated PC in the TCGA PRAD (TCGA) database to castrate resistant (mCRPC) specimens in the dbGAP study phs000915.v1.p1database. The raw data (fastq files) was quantified using kallisto, normalized by TMM using R package edgeR, batch effects corrected using R package SVA. Analysis of differential gene expression by R package sleuth. Pathway and gene set by GSEA, GAGE/pathview packages for Gene Ontology (GO) and KEGG. Results: TMPRSS2-ERG+, 5/7. Highest DEG in eADT vs. TCGA vs mCRPC were non-coding RNA’s. Among 17431 differentially regulated paths; GSEA of eADT vs TCGA or mCRPC: 341 (1.95%) and 1366 (7.84%) up- vs 46 (0.26%) and 59 (0.34%) down-regulated. KEGG paths, eADT vs. TCGA or mCRPC, 11 and 53 up vs. 2 and 3 down- respectively. Highly down- path in eADT vs TCGA (log q < 10-17) was ribosomal vs. cell cycle and DNA replication in mCRPC. Six paths significantly up- in eADT vs TCGA or mCRPC: Wnt, adherence junction, steroid biosynthesis, unsaturated fatty acids, citrate cycle, ErbB. Calcium, MAPK, insulin, GnRH and Hedgehog were also up- in eADT vs mCRPC. AR full-length was marginally higher in eADT than TCGA and lower than mCRPC, no differences in gene targets. Conclusions: This pilot data shows that ADT triggers a wide range of gene expression alterations that support PC cell survival and may be vulnerable to therapeutic targeting in addition to the androgen pathway. Validation of these findings is planned in a larger set of samples from the same bank.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Escoto-Sandoval ◽  
Alan Flores-Díaz ◽  
M. Humberto Reyes-Valdés ◽  
Neftalí Ochoa-Alejo ◽  
Octavio Martínez

AbstractRNA-Seq experiments allow genome-wide estimation of relative gene expression. Estimation of gene expression at different time points generates time expression profiles of phenomena of interest, as for example fruit development. However, such profiles can be complex to analyze and interpret. We developed a methodology that transforms original RNA-Seq data from time course experiments into standardized expression profiles, which can be easily interpreted and analyzed. To exemplify this methodology we used RNA-Seq data obtained from 12 accessions of chili pepper (Capsicum annuum L.) during fruit development. All relevant data, as well as functions to perform analyses and interpretations from this experiment, were gathered into a publicly available R package: “Salsa”. Here we explain the rational of the methodology and exemplify the use of the package to obtain valuable insights into the multidimensional time expression changes that occur during chili pepper fruit development. We hope that this tool will be of interest for researchers studying fruit development in chili pepper as well as in other angiosperms.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Verônica R. de Melo Costa ◽  
Julianus Pfeuffer ◽  
Annita Louloupi ◽  
Ulf A. V. Ørom ◽  
Rosario M. Piro

Abstract Background Introns are generally removed from primary transcripts to form mature RNA molecules in a post-transcriptional process called splicing. An efficient splicing of primary transcripts is an essential step in gene expression and its misregulation is related to numerous human diseases. Thus, to better understand the dynamics of this process and the perturbations that might be caused by aberrant transcript processing it is important to quantify splicing efficiency. Results Here, we introduce SPLICE-q, a fast and user-friendly Python tool for genome-wide SPLICing Efficiency quantification. It supports studies focusing on the implications of splicing efficiency in transcript processing dynamics. SPLICE-q uses aligned reads from strand-specific RNA-seq to quantify splicing efficiency for each intron individually and allows the user to select different levels of restrictiveness concerning the introns’ overlap with other genomic elements such as exons of other genes. We applied SPLICE-q to globally assess the dynamics of intron excision in yeast and human nascent RNA-seq. We also show its application using total RNA-seq from a patient-matched prostate cancer sample. Conclusions Our analyses illustrate that SPLICE-q is suitable to detect a progressive increase of splicing efficiency throughout a time course of nascent RNA-seq and it might be useful when it comes to understanding cancer progression beyond mere gene expression levels. SPLICE-q is available at: https://github.com/vrmelo/SPLICE-q


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yance Feng ◽  
Lei M. Li

Abstract Background Normalization of RNA-seq data aims at identifying biological expression differentiation between samples by removing the effects of unwanted confounding factors. Explicitly or implicitly, the justification of normalization requires a set of housekeeping genes. However, the existence of housekeeping genes common for a very large collection of samples, especially under a wide range of conditions, is questionable. Results We propose to carry out pairwise normalization with respect to multiple references, selected from representative samples. Then the pairwise intermediates are integrated based on a linear model that adjusts the reference effects. Motivated by the notion of housekeeping genes and their statistical counterparts, we adopt the robust least trimmed squares regression in pairwise normalization. The proposed method (MUREN) is compared with other existing tools on some standard data sets. The goodness of normalization emphasizes on preserving possible asymmetric differentiation, whose biological significance is exemplified by a single cell data of cell cycle. MUREN is implemented as an R package. The code under license GPL-3 is available on the github platform: github.com/hippo-yf/MUREN and on the conda platform: anaconda.org/hippo-yf/r-muren. Conclusions MUREN performs the RNA-seq normalization using a two-step statistical regression induced from a general principle. We propose that the densities of pairwise differentiations are used to evaluate the goodness of normalization. MUREN adjusts the mode of differentiation toward zero while preserving the skewness due to biological asymmetric differentiation. Moreover, by robustly integrating pre-normalized counts with respect to multiple references, MUREN is immune to individual outlier samples.


2020 ◽  
Vol 21 (8) ◽  
pp. 2748 ◽  
Author(s):  
Ruth Barral-Arca ◽  
Alberto Gómez-Carballa ◽  
Miriam Cebey-López ◽  
María José Currás-Tuala ◽  
Sara Pischedda ◽  
...  

There is a growing interest in unraveling gene expression mechanisms leading to viral host invasion and infection progression. Current findings reveal that long non-coding RNAs (lncRNAs) are implicated in the regulation of the immune system by influencing gene expression through a wide range of mechanisms. By mining whole-transcriptome shotgun sequencing (RNA-seq) data using machine learning approaches, we detected two lncRNAs (ENSG00000254680 and ENSG00000273149) that are downregulated in a wide range of viral infections and different cell types, including blood monocluclear cells, umbilical vein endothelial cells, and dermal fibroblasts. The efficiency of these two lncRNAs was positively validated in different viral phenotypic scenarios. These two lncRNAs showed a strong downregulation in virus-infected patients when compared to healthy control transcriptomes, indicating that these biomarkers are promising targets for infection diagnosis. To the best of our knowledge, this is the very first study using host lncRNAs biomarkers for the diagnosis of human viral infections.


2020 ◽  
Author(s):  
SK Reilly ◽  
SJ Gosai ◽  
A Gutierrez ◽  
JC Ulirsch ◽  
M Kanai ◽  
...  

AbstractCRISPR screens for cis-regulatory elements (CREs) have shown unprecedented power to endogenously characterize the non-coding genome. To characterize CREs we developed HCR-FlowFISH (Hybridization Chain Reaction Fluorescent In-Situ Hybridization coupled with Flow Cytometry), which directly quantifies native transcripts within their endogenous loci following CRISPR perturbations of regulatory elements, eliminating the need for restrictive phenotypic assays such as growth or transcript-tagging. HCR-FlowFISH accurately quantifies gene expression across a wide range of transcript levels and cell types. We also developed CASA (CRISPR Activity Screen Analysis), a hierarchical Bayesian model to identify and quantify CRE activity. Using >270,000 perturbations, we identified CREs for GATA1, HDAC6, ERP29, LMO2, MEF2C, CD164, NMU, FEN1 and the FADS gene cluster. Our methods detect subtle gene expression changes and identify CREs regulating multiple genes, sometimes at different magnitudes and directions. We demonstrate the power of HCR-FlowFISH to parse genome-wide association signals by nominating causal variants and target genes.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2748 ◽  
Author(s):  
Andrea Komljenovic ◽  
Julien Roux ◽  
Marc Robinson-Rechavi ◽  
Frederic B. Bastian

BgeeDB is a collection of functions to import into R re-annotated, quality-controlled and reprocessed expression data available in the Bgee database. This includes data from thousands of wild-type healthy samples of multiple animal species, generated with different gene expression technologies (RNA-seq, Affymetrix microarrays, expressed sequence tags, and in situ hybridizations). BgeeDB facilitates downstream analyses, such as gene expression analyses with other Bioconductor packages. Moreover, BgeeDB includes a new gene set enrichment test for preferred localization of expression of genes in anatomical structures (“TopAnat”). Along with the classical Gene Ontology enrichment test, this test provides a complementary way to interpret gene lists. Availability: http://www.bioconductor.org/packages/BgeeDB/


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250013
Author(s):  
Chia-Hsin Hsu ◽  
Hirotaka Tomiyasu ◽  
Chi-Hsun Liao ◽  
Chen-Si Lin

Doxorubicin resistance is a major challenge in the successful treatment of canine diffuse large B-cell lymphoma (cDLBCL). In the present study, MethylCap-seq and RNA-seq were performed to characterize the genome-wide DNA methylation and differential gene expression patterns respectively in CLBL-1 8.0, a doxorubicin-resistant cDLBCL cell line, and in CLBL-1 as control, to investigate the underlying mechanisms of doxorubicin resistance in cDLBCL. A total of 20289 hypermethylated differentially methylated regions (DMRs) were detected. Among these, 1339 hypermethylated DMRs were in promoter regions, of which 24 genes showed an inverse correlation between methylation and gene expression. These 24 genes were involved in cell migration, according to gene ontology (GO) analysis. Also, 12855 hypermethylated DMRs were in gene-body regions. Among these, 353 genes showed a positive correlation between methylation and gene expression. Functional analysis of these 353 genes highlighted that TGF-β and lysosome-mediated signal pathways are significantly associated with the drug resistance of CLBL-1. The tumorigenic role of TGF-β signaling pathway in CLBL-1 8.0 was further validated by treating the cells with a TGF-β inhibitor(s) to show the increased chemo-sensitivity and intracellular doxorubicin accumulation, as well as decreased p-glycoprotein expression. In summary, the present study performed an integrative analysis of DNA methylation and gene expression in CLBL-1 8.0 and CLBL-1. The candidate genes and pathways identified in this study hold potential promise for overcoming doxorubicin resistance in cDLBCL.


2021 ◽  
Author(s):  
Dennis A Sun ◽  
Nipam H Patel

AbstractEmerging research organisms enable the study of biology that cannot be addressed using classical “model” organisms. The development of novel data resources can accelerate research in such animals. Here, we present new functional genomic resources for the amphipod crustacean Parhyale hawaiensis, facilitating the exploration of gene regulatory evolution using this emerging research organism. We use Omni-ATAC-Seq, an improved form of the Assay for Transposase-Accessible Chromatin coupled with next-generation sequencing (ATAC-Seq), to identify accessible chromatin genome-wide across a broad time course of Parhyale embryonic development. This time course encompasses many major morphological events, including segmentation, body regionalization, gut morphogenesis, and limb development. In addition, we use short- and long-read RNA-Seq to generate an improved Parhyale genome annotation, enabling deeper classification of identified regulatory elements. We leverage a variety of bioinformatic tools to discover differential accessibility, predict nucleosome positioning, infer transcription factor binding, cluster peaks based on accessibility dynamics, classify biological functions, and correlate gene expression with accessibility. Using a Minos transposase reporter system, we demonstrate the potential to identify novel regulatory elements using this approach, including distal regulatory elements. This work provides a platform for the identification of novel developmental regulatory elements in Parhyale, and offers a framework for performing such experiments in other emerging research organisms.Primary Findings-Omni-ATAC-Seq identifies cis-regulatory elements genome-wide during crustacean embryogenesis-Combined short- and long-read RNA-Seq improves the Parhyale genome annotation-ImpulseDE2 analysis identifies dynamically regulated candidate regulatory elements-NucleoATAC and HINT-ATAC enable inference of nucleosome occupancy and transcription factor binding-Fuzzy clustering reveals peaks with distinct accessibility and chromatin dynamics-Integration of accessibility and gene expression reveals possible enhancers and repressors-Omni-ATAC can identify known and novel regulatory elements


Sign in / Sign up

Export Citation Format

Share Document