Small Cell Undifferentiated Histology Does Not Adversely Affect Outcome in Hepatoblastoma: A Report From the Children's Oncology Group (COG) AHEP0731 Study Committee

Author(s):  
Angela Trobaugh-Lotrario ◽  
Howard M. Katzenstein ◽  
Sarangarajan Ranganathan ◽  
Dolores Lopez-Terrada ◽  
Mark D. Krailo ◽  
...  

PURPOSE Small cell undifferentiated (SCU) histology in hepatoblastoma (HB) tumors has historically been associated with a poor prognosis. Tumors from patients enrolled on Children's Oncology Group (COG) study AHEP0731 underwent institutional and central pathologic review for identification of SCU histology. PATIENTS AND METHODS Patients with SCU histology identified at the local treating institution who had otherwise low-risk tumors were upstaged to the intermediate-risk treatment stratum, whereas those only identified by retrospective central review were treated per the local institution as low-risk. Patients with otherwise intermediate- or high-risk tumors remained in that treatment stratum, respectively. Central review was to be performed for all tissue samples obtained at any time point. Treatment was per local review, whereas analysis of outcome was based on central review. RESULTS Thirty-five patients had some elements (1%-25%) of SCU identified on central review of diagnostic specimens. All but two patient tissue sample retained nuclear INI1 expression. The presence of SCU histology did not correlate with age, alpha-fetoprotein level at diagnosis, or sex. The presence of SCU did not affect event-free survival (EFS). EFS at 5 years for patients with low-risk, intermediate-risk, and high-risk with SCU HB was 86% (95% CI, 33 to 98), 81% (95% CI, 57 to 92), and 29% (95% CI, 4 to 61), respectively, compared with EFS at 5 years for patients without SCU enrolled with low-risk, intermediate-risk, and high-risk of 87% (95% CI, 72 to 95), 88% (95% CI, 79 to 94), and 55% (95% CI, 32 to 74; P = .17), respectively. CONCLUSION The presence of SCU histology in HB does not appear to adversely affect outcome. Future studies should be able to treat patients with SCU HB according to risk stratification without regard to the presence of SCU histology.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2732-2732
Author(s):  
Jessica A. Pollard ◽  
Todd A. Alonzo ◽  
Robert B. Gerbing ◽  
Phoenix A. Ho ◽  
Rhonda Ries ◽  
...  

Abstract Abstract 2732 Our previous analysis of diagnostic AML bone marrow (BM) samples from a subset of patients enrolled on Children's Oncology Group (COG) AAML03P1, a pilot study in which conventional chemotherapy was used in combination with the CD33 targeted therapeutic gemtuzumab ozogamicin (GO), demonstrated that CD33 expression is highly variable in pediatric AML and that low or absent CD33 expression was not associated with inferior clinical response. Moreover, patients with the highest CD33 expression did not have superior outcomes. Low CD33 expression was associated with low risk disease [core binding factor (CBF) AML e.g. t(8;21), inv(16) or t(16;16), CEBPA mutated AML, NPM1 mutated AML] whereas the highest CD33 expression levels were seen in patients with high-risk disease [FLT3/ITD+ disease with allelic ratio >0.4, high risk cytogenetics e.g. -7, -5, -5q]. These findings refute previous adult AML data in which CD33 expression is directly correlated with response to single agent GO and suggest, within AAML03P1, that clinical response is linked to underlying disease biology. In this larger analysis, we prospectively evaluated CD33 expression levels of AML blasts isolated from 676 pediatric diagnostic BM samples (238/340 and 438/968 patients enrolled on COG AAML03P1 and COG AAML0531 respectively) to determine whether this association persists in a larger cohort. CD33 expression, as defined by mean fluorescent intensity (MFI) of the blast population, varied over 2-log fold, and a median MFI of 128 was observed (range 3–1550.07). The study population was divided into quartiles (Q) based on CD33 expression (n= 169 patients per quartile). Median MFI was 37.49 (range 3–62) for Q1, 90 (range 62.21–128) for Q2, 171 (range 128–245) for Q3 and 349 (range 245.52–1550.07) for Q4. Samples were also screened for disease-relevant molecular mutations: 89/650 (14%) were FLT3/ITD positive; 69/587 (12%) were positive for NPM1 mutations; and 35/585 (6%) positive for CEBPA mutations. FLT3/ITD prevalence significantly increased with increasing CD33 quartile (Q1 7%, Q2 10%, Q3 17%, Q4 20%; p<0.001), whereas no definitive trend in prevalence was observed for NPM1 (Q1 7%, Q2 14%, Q3 15%, Q4 12%; p=0.158) or CEBPA mutations (Q1 6%, Q2 8%, Q3 6%, Q4 4%; p=0.307). Cytogenetic data was available for 613 (91%) samples; 177 (29%) CBF AML samples were identified and their prevalence declined with increasing quartile (Q1 51%, Q2 40%, Q3 20%, Q4 6%; p<0.001). There was no apparent association between CD33 expression and high-risk cytogenetics; however, analysis was limited by the small number of patients (9/613, 1.4%) with such mutations. For risk-group classification, complete cytogenetic and molecular data were available for 535 (79%) samples: 204/535 (38%) were classified as low-risk and 64/535 (12%) were defined as high-risk. There was an inverse association between CD33 expression and prevalence of low-risk AML (Q1 59%, Q2 50%, Q3 27%, Q4 17%; p<0.001). In contrast, the prevalence of high-risk disease increased with each quartile (Q1 5%, Q2 8%, Q3 17%, Q4 18%; p<0.001). We observed a higher median CD33 MFI with high-risk disease (median MFI 195.315; range 12–720) than with low-risk (median MFI 80.5; range 5–1550.07) or intermediate-risk (i.e., neither low- nor high-risk) disease (median MFI 163.06; range 7–1351) (p<0.001). Response from end of induction I (CR) was also determined for our patient cohort. Rates of CR were similar across CD33-expression quartiles (Q1 78%, Q2 75%, Q3 75%, Q4 72%; p=0.581). Moreover, CR rates for each risk group did not vary across quartiles (low-risk: Q1 84%, Q2 85%, Q3 88%, Q4 82%; p=0.917; intermediate-risk: Q1 77%, Q2 65%, Q3 72%, Q4 71%; p=0.594; high-risk: Q1 57%, Q2 67%, Q3 60%, Q4 72%; p=0.801). This large scale analysis supports our earlier finding that CD33 expression in pediatric AML is heterogeneous and associated with conventional risk-group criteria. As outcome data matures from COG AAML0531, the phase III counterpart of AAML03P1 in which patients are randomized to GO treatment, we will determine whether the addition of GO improves survival of patients with low versus high CD33 expression and whether this finding translates into enhanced outcomes for associated disease-risk groups. Disclosures: Franklin: Amgen : Employment, Equity Ownership.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Neda Gholizadeh ◽  
Peter B. Greer ◽  
John Simpson ◽  
Jonathan Goodwin ◽  
Caixia Fu ◽  
...  

Abstract Background Current multiparametric MRI (mp-MRI) in routine clinical practice has poor-to-moderate diagnostic performance for transition zone prostate cancer. The aim of this study was to evaluate the potential diagnostic performance of novel 1H magnetic resonance spectroscopic imaging (MRSI) using a semi-localized adiabatic selective refocusing (sLASER) sequence with gradient offset independent adiabaticity (GOIA) pulses in addition to the routine mp-MRI, including T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and quantitative dynamic contrast enhancement (DCE) for transition zone prostate cancer detection, localization and grading. Methods Forty-one transition zone prostate cancer patients underwent mp-MRI with an external phased-array coil. Normal and cancer regions were delineated by two radiologists and divided into low-risk, intermediate-risk, and high-risk categories based on TRUS guided biopsy results. Support vector machine models were built using different clinically applicable combinations of T2WI, DWI, DCE, and MRSI. The diagnostic performance of each model in cancer detection was evaluated using the area under curve (AUC) of the receiver operating characteristic diagram. Then accuracy, sensitivity and specificity of each model were calculated. Furthermore, the correlation of mp-MRI parameters with low-risk, intermediate-risk and high-risk cancers were calculated using the Spearman correlation coefficient. Results The addition of MRSI to T2WI + DWI and T2WI + DWI + DCE improved the accuracy, sensitivity and specificity for cancer detection. The best performance was achieved with T2WI + DWI + MRSI where the addition of MRSI improved the AUC, accuracy, sensitivity and specificity from 0.86 to 0.99, 0.83 to 0.96, 0.80 to 0.95, and 0.85 to 0.97 respectively. The (choline + spermine + creatine)/citrate ratio of MRSI showed the highest correlation with cancer risk groups (r = 0.64, p < 0.01). Conclusion The inclusion of GOIA-sLASER MRSI into conventional mp-MRI significantly improves the diagnostic accuracy of the detection and aggressiveness assessment of transition zone prostate cancer.


Author(s):  
Johannes Korth ◽  
Benjamin Wilde ◽  
Sebastian Dolff ◽  
Jasmin Frisch ◽  
Michael Jahn ◽  
...  

SARS-CoV-2 is a worldwide challenge for the medical sector. Healthcare workers (HCW) are a cohort vulnerable to SARS-CoV-2 infection due to frequent and close contact with COVID-19 patients. However, they are also well trained and equipped with protective gear. The SARS-CoV-2 IgG antibody status was assessed at three different time points in 450 HCW of the University Hospital Essen in Germany. HCW were stratified according to contact frequencies with COVID-19 patients in (I) a high-risk group with daily contacts with known COVID-19 patients (n = 338), (II) an intermediate-risk group with daily contacts with non-COVID-19 patients (n = 78), and (III) a low-risk group without patient contacts (n = 34). The overall seroprevalence increased from 2.2% in March–May to 4.0% in June–July to 5.1% in October–December. The SARS-CoV-2 IgG detection rate was not significantly different between the high-risk group (1.8%; 3.8%; 5.5%), the intermediate-risk group (5.1%; 6.3%; 6.1%), and the low-risk group (0%, 0%, 0%). The overall SARS-CoV-2 seroprevalence remained low in HCW in western Germany one year after the outbreak of COVID-19 in Germany, and hygiene standards seemed to be effective in preventing patient-to-staff virus transmission.


2021 ◽  
pp. 109352662110487
Author(s):  
Haruna Nishimaki ◽  
Yoko Nakanishi ◽  
Hiroshi Yagasaki ◽  
Shinobu Masuda

Background Peripheral neuroblastic tumors (pNTs) are the most common childhood extracranial solid tumors. There are several therapeutic strategies targeting disialoganglioside GD2. Disialoganglioside GD3 has become a potential target. However, the mechanism by which pNTs express GD3 and GD2 remains unclear. We investigated the combined expression status of GD3 and GD2 in pNTs and delineated their clinicopathological values. Methods GD3 and GD2 expression was examined in pNT tissue samples (n = 35) using immunohistochemistry and multiple immunofluorescence imaging. Results GD3 and GD2 expression was positive in 32/35 and 25/35 samples, respectively. Combinatorial analysis of GD3 and GD2 expression in neuroblastoma showed that both were heterogeneously expressed from cell to cell. There were higher numbers of GD3-positive and GD2-negative cells in the low-risk group than in the intermediate-risk ( P = 0.014) and high-risk ( P = 0.009) groups. Cases with high proportions of GD3-positive and GD2-negative cells were associated with the International Neuroblastoma Staging System stage ( P = 0.004), Children’s Oncology Group risk group ( P = 0.001), and outcome ( P = 0.019) and tended to have a higher overall survival rate. Conclusion We demonstrated that neuroblastomas from low-risk patients included more GD3-positive and GD2-negative cells than those from high-risk patients. Clarifying the heterogeneity of neuroblastoma aids in better understanding the biological characteristics and clinical behavior.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xuehua Xi ◽  
Ying Wang ◽  
Luying Gao ◽  
Yuxin Jiang ◽  
Zhiyong Liang ◽  
...  

BackgroundThe incidence and mortality of thyroid cancer, including thyroid nodules &gt; 4 cm, have been increasing in recent years. The current evaluation methods are based mostly on studies of patients with thyroid nodules &lt; 4 cm. The aim of the current study was to establish a risk stratification model to predict risk of malignancy in thyroid nodules &gt; 4 cm.MethodsA total of 279 thyroid nodules &gt; 4 cm in 267 patients were retrospectively analyzed. Nodules were randomly assigned to a training dataset (n = 140) and a validation dataset (n = 139). Multivariable logistic regression analysis was applied to establish a nomogram. The risk stratification of thyroid nodules &gt; 4 cm was established according to the nomogram. The diagnostic performance of the model was evaluated and compared with the American College Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS), Kwak TI-RADS and 2015 ATA guidelines using the area under the receiver operating characteristic curve (AUC).ResultsThe analysis included 279 nodules (267 patients, 50.6 ± 13.2 years): 229 were benign and 50 were malignant. Multivariate regression revealed microcalcification, solid mass, ill-defined border and hypoechogenicity as independent risk factors. Based on the four factors, a risk stratified clinical model was developed for evaluating nodules &gt; 4 cm, which includes three categories: high risk (risk value = 0.8-0.9, with more than 3 factors), intermediate risk (risk value = 0.3-0.7, with 2 factors or microcalcification) and low risk (risk value = 0.1-0.2, with 1 factor except microcalcification). In the validation dataset, the malignancy rate of thyroid nodules &gt; 4 cm that were classified as high risk was 88.9%; as intermediate risk, 35.7%; and as low risk, 6.9%. The new model showed greater AUC than ACR TI-RADS (0.897 vs. 0.855, p = 0.040), but similar sensitivity (61.9% vs. 57.1%, p = 0.480) and specificity (91.5% vs. 93.2%, p = 0.680).ConclusionMicrocalcification, solid mass, ill-defined border and hypoechogenicity on ultrasound may be signs of malignancy in thyroid nodules &gt; 4 cm. A risk stratification model for nodules &gt; 4 cm may show better diagnostic performance than ACR TI-RADS, which may lead to better preoperative decision-making.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3009-3009
Author(s):  
Eun-Ji Choi ◽  
Young-Uk Cho ◽  
Seongsoo Jang ◽  
Chan-jeoung Park ◽  
Han-Seung Park ◽  
...  

Background: Unexplained cytopenia comprises a spectrum of hematological diseases from idiopathic cytopenia of undetermined significance (ICUS) to myelodysplastic syndrome (MDS). Revised International Prognostic Scoring System (IPSS-R) is the standard tool to assess risk in MDS. Here, we investigated the occurrence, characteristics, and changing pattern of mutations in patients with ICUS and MDS stratified by IPSS-R score. Methods: A total of 211 patients were enrolled: 73 with ICUS and 138 with MDS. We analyzed the sequencing data of a targeted gene panel assay covering 141 genes using the MiSeqDx platform (Illumina). The lower limit of variant allele frequency (VAF) was set to 2.0% of mutant allele reads. Bone marrow components were assessed for the revised diagnosis according to the 2016 WHO classification. Lower-risk (LR) MDS was defined as those cases with very low- or low-risk MDS according to the IPSS-R. Higher-risk (HR) MDS was defined as those cases with high- or very high-risk MDS according to the IPSS-R. Results: Patients with ICUS were classified as very low-risk (39.7%), low-risk (54.8%), and intermediate-risk (5.5%) according to the IPSS-R. Patients with MDS were classified as LR (35.5%), intermediate-risk (30.4%), and HR (34.1%). In the ICUS, 28 (38.4%) patients carried at least one mutation in the recurrently mutated genes in MDS (MDS mutation). The most commonly mutated genes were DNMT3A (11.0%), followed by TET2 (9.6%), BCOR (4.1%), and U2AF1, SRSF2, IDH1 and ETV6 (2.7% for each). IPSS-R classification was not associated with mutational VAF and the number of mutations in ICUS. In the 49 LR MDS, 28 (57.1%) patients carried at least one MDS mutation. The most commonly mutated genes were SF3B1 (20.4%), followed by TET2 (12.2%), U2AF1 (10.2%), DNMT3A (10.2%), ASXL1 (10.2%), and BCOR (6.1%). Higher VAF and number of mutations were observed in LR MDS compared to ICUS patients. In the 42 intermediate-risk MDS, 27 (64.3%) patients carried at least one MDS mutation. The most commonly mutated genes were ASXL1 (23.8%), followed by TET2 (21.4%), RUNX1 (16.7%), U2AF1 (14.3%), DNMT3A (14.3%), SF3B1 (9.5%), and SRSF2, BCOR, STAG2 and CBL (7.1% for each). In the 47 HR MDS, 36 (76.6%) patients carried at least one MDS mutation. The most commonly mutated genes were TET2 (25.5%), followed by DNMT3A (14.9%), TP53 (14.9%), RUNX1 (12.8%), U2AF1 (10.6%), ASXL1 (10.6%), and SRSF2 and KRAS (6.4% for each). As the disease progressed, VAF and number of the MDS mutations gradually increased, and mutations involving RNA splicing, histone modification, transcription factor or p53 pathway had a trend for increasing frequency. Specifically, ASXL1, TP53, and RUNX1 mutations were the most striking features in patients with advanced stage of the disease. Cohesin mutations were not detected in ICUS, whereas these mutations were detected at a relatively high frequency in HR MDS. Our data were summarized in Table 1. Conclusions: We demonstrate that on disease progression, MDS mutations are increased in number as well as are expanded in size. Furthermore, a subset of mutations tends to be enriched for intermediate- to HR MDS. The results of this study can aid both diagnostic and prognostic stratification in patients with unexpected cytopenia. In particular, characterization of MDS mutations can be useful in refining bone marrow diagnosis in challenging situations such as distinguishing LR MDS from ICUS. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Mo Chen ◽  
Tian-en Li ◽  
Pei-zhun Du ◽  
Junjie Pan ◽  
Zheng Wang ◽  
...  

Abstract Background and aims: In this research, we aimed to construct a risk classification model to predict overall survival (OS) and locoregional surgery benefit in colorectal cancer (CRC) patients with distant metastasis.Methods: We selected a cohort consisting of 12741 CRC patients diagnosed with distant metastasis between 2010 and 2014, from the Surveillance, Epidemiology and End Results (SEER) database. Patients were randomly assigned into training group and validation group at the ratio of 2:1. Univariable and multivariable Cox regression models were applied to screen independent prognostic factors. A nomogram was constructed and assessed by the Harrell’s concordance index (C-index) and calibration plots. A novel risk classification model was further established based on the nomogram.Results: Ultimately 12 independent risk factors including race, age, marriage, tumor site, tumor size, grade, T stage, N stage, bone metastasis, brain metastasis, lung metastasis and liver metastasis were identified and adopted in the nomogram. The C-indexes of training and validation groups were 0.77 (95% confidence interval [CI] 0.73-0.81) and 0.75 (95% CI 0.72-0.78), respectively. The risk classification model stratified patients into three risk groups (low-, intermediate- and high-risk) with divergent median OS (low-risk: 36.0 months, 95% CI 34.1-37.9; intermediate-risk: 18.0 months, 95% CI 17.4-18.6; high-risk: 6.0 months, 95% CI 5.3-6.7). Locoregional therapies including surgery and radiotherapy could prognostically benefit patients in the low-risk group (surgery: hazard ratio [HR] 0.59, 95% CI 0.50-0.71; radiotherapy: HR 0.84, 95% CI 0.72-0.98) and intermediate risk group (surgery: HR 0.61, 95% CI 0.54-0.68; radiotherapy: HR 0.86, 95% CI 0.77-0.95), but not in the high-risk group (surgery: HR 1.03, 95% CI 0.82-1.29; radiotherapy: HR 1.03, 95% CI 0.81-1.31). And all risk groups could benefit from systemic therapy (low-risk: HR 0.68, 95% CI 0.58-0.80; intermediate-risk: HR 0.50, 95% CI 0.47-0.54; high-risk: HR 0.46, 95% CI 0.40-0.53).Conclusion: A novel risk classification model predicting prognosis and locoregional surgery benefit of CRC patients with distant metastasis was established and validated. This predictive model could be further utilized by physicians and be of great significance for medical practice.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
T Grinberg ◽  
T Bental ◽  
Y Hammer ◽  
A R Assali ◽  
H Vaknin-Assa ◽  
...  

Abstract Background Following Myocardial Infarction (MI), patients are at increased risk for recurrent cardiovascular events, particularly during the immediate period. Yet some patients are at higher risk than others, owing to their clinical characteristics and comorbidities, these high-risk patients are less often treated with guideline-recommended therapies. Aim To examine temporal trends in treatment and outcomes of patients with MI according to the TIMI risk score for secondary prevention (TRS2°P), a recently validated risk stratification tool. Methods A retrospective cohort study of patients with an acute MI, who underwent percutaneous coronary intervention and were discharged alive between 2004–2016. Temporal trends were examined in the early (2004–2010) and late (2011–2016) time-periods. Patients were stratified by the TRS2°P to a low (≤1), intermediate (2) or high-risk group (≥3). Clinical outcomes included 30-day MACE (death, MI, target vessel revascularization, coronary artery bypass grafting, unstable angina or stroke) and 1-year mortality. Results Among 4921 patients, 31% were low-risk, 27% intermediate-risk and 42% high-risk. Compared to low and intermediate-risk patients, high-risk patients were older, more commonly female, and had more comorbidities such as hypertension, diabetes, peripheral vascular disease, and chronic kidney disease. They presented more often with non ST elevation MI and 3-vessel disease. High-risk patients were less likely to receive drug eluting stents and potent anti-platelet drugs, among other guideline-recommended therapies. Evidently, they experienced higher 30-day MACE (8.1% vs. 3.9% and 2.1% in intermediate and low-risk, respectively, P<0.001) and 1-year mortality (10.4% vs. 3.9% and 1.1% in intermediate and low-risk, respectively, P<0.001). During time, comparing the early to the late-period, the use of potent antiplatelets and statins increased among the entire cohort (P<0.001). However, only the high-risk group demonstrated a significantly lower 30-day MACE (P=0.001). During time, there were no differences in 1-year mortality rate among all risk categories. Temporal trends in 30-day MACE by TRS2°P Conclusion Despite a better application of guideline-recommended therapies, high-risk patients after MI are still relatively undertreated. Nevertheless, they demonstrated the most notable improvement in outcomes over time.


Sign in / Sign up

Export Citation Format

Share Document