An Overview of Potential Toxicity of Food Adulterants and Food Adulteration Act

Author(s):  
Meenu Thakur ◽  
Krishan D Sharma ◽  
Madan L Verma
2011 ◽  
Vol 4 (4) ◽  
pp. 101-102
Author(s):  
Dr.S.M.Yamuna Dr.S.M.Yamuna ◽  
◽  
K.Meenachi K.Meenachi ◽  
S.Tharangini S.Tharangini

2019 ◽  
Vol 25 (42) ◽  
pp. 5930-5944 ◽  
Author(s):  
Jian Yin ◽  
Xudong Deng ◽  
Jie Zhang ◽  
Jun Lin

Background: ATP-binding cassette (ABC) transporters-mediated multidrug resistance (MDR) remains the major obstacle for effective cancer therapy. Nanoparticles (NPs)-based delivery systems are promising to overcome MDR, but only a few of them have been accepted for clinical treatment, which should be due to their insufficient transportation and potential toxicity. In this respect, more and more attentions are being attracted on the interactions between NPs and ABC transporters, which hold a key role in the treatment of MDR cancer and the toxicity of NPs. However, there are no systematic reviews about such interactions, especially about their corresponding mechanism. Methods: We undertook extensive search of PubMed databases for peer-reviewed literatures using focused review questions. The retrieved papers were mostly published within the 5 years (84 of 104) and all with an impact factor above 2. First, this review focused on the current knowledge of ABC transporters involved in MDR and their inhibitors. Then, we reviewed the most recent literature about the inhibitory effects of organic NPs’ excipients on ABC transporters and the direct interactions of inorganic NPs with ABC transporters. The major elements of obtained papers were described and classified depending on the structure of NPs. Results: Both organic and inorganic NPs can inhibit the function of ABC transporters, but based on different mechanisms. The effects of organic NPs are caused by several excipients like surfactants, polymers, lipids and cyclodextrin. Meanwhile, inorganic NPs usually act as the substrates of ABC transporters and competitively inhibit the efflux of drugs. These phenomena are interesting and worth investigating. Conclusion: The finding of this review confirmed the potential interactions between NPs and ABC transporters. These phenomena are interesting and worth investigating, and a knowledge of related mechanism would not only be important for the clinical therapies toward overcoming cancer MDR, but also help the treatment of other diseases like tuberculosis, AIDS, and central nervous system disorders, whose drugresistance was also related to ABC transporter-mediated efflux.


RSC Advances ◽  
2019 ◽  
Vol 9 (25) ◽  
pp. 14051-14059
Author(s):  
Abdulrahman Ahmed Mahmood ◽  
Jianqi Zhang ◽  
Rufang Liao ◽  
Xiwei Pan ◽  
Dan Xu ◽  
...  

The acid-responsive pHLIP modified SPION as an MRI contrast agent for liver cancer diagnosis requires the validation of both the tumor-specific enhancement and a safe profile in cirrhosis.


Author(s):  
Ewa Baranowska-Wójcik

AbstractThe recent years have seen a significant interest in the applications of nanotechnology in various facets of our lives. Due to their increasingly widespread use, human exposure to nanoparticles (NPs) is fast becoming unavoidable. Among the wide group of nanoparticles currently employed in industry, titanium dioxide nanoparticles, TiO2 NPs, are particularly popular. Due to its white colour, TiO2 is widely used as a whitening food additive (E 171). Yet, there have been few studies aimed at determining its direct impact on bacteria, while the available data suggest that TiO2 NPs may influence microbiota causing problems such as inflammatory bowel disease, obesity, or immunological disorders. Indeed, there are increasing concerns that its presence may lead to intestinal barrier impairment, including dysbiosis of intestinal microbiota. This article aims to present an overview of studies conducted to date with regard to the impact of TiO2 NPs on human microbiota as well as factors that can affect the same. Such information is necessary if we are to conclusively determine the potential toxicity of inorganic nanoparticles.


2021 ◽  
Vol 83 ◽  
pp. 103574
Author(s):  
Samarasinghe Vidane Arachchige Chamila Samarasinghe ◽  
Kannan Krishnan ◽  
Robert John Aitken ◽  
Ravi Naidu ◽  
Mallavarapu Megharaj
Keyword(s):  

2021 ◽  
Vol 22 (2) ◽  
pp. 567
Author(s):  
Brixhilda Domi ◽  
Kapil Bhorkar ◽  
Carlos Rumbo ◽  
Labrini Sygellou ◽  
Spyros N. Yannopoulos ◽  
...  

Boron nitride (BN) nanomaterials have been increasingly explored for potential applications in chemistry and biology fields (e.g., biomedical, pharmaceutical, and energy industries) due to their unique physico-chemical properties. However, their safe utilization requires a profound knowledge on their potential toxicological and environmental impact. To date, BN nanoparticles have been considered to have a high biocompatibility degree, but in some cases, contradictory results on their potential toxicity have been reported. Therefore, in the present study, we assessed two commercial 2D BN samples, namely BN-nanopowder (BN-PW) and BN-nanoplatelet (BN-PL), with the objective to identify whether distinct physico-chemical features may have an influence on the biological responses of exposed cellular models. Morphological, structural, and composition analyses showed that the most remarkable difference between both commercial samples was the diameter of their disk-like shape, which was of 200–300 nm for BN-PL and 100–150 nm for BN-PW. Their potential toxicity was investigated using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus Saccharomycescerevisiae, as human and environmental eukaryotic models respectively, employing in vitro assays. In both cases, cellular viability assays and reactive oxygen species (ROS) determinations where performed. The impact of the selected nanomaterials in the viability of both unicellular models was very low, with only a slight reduction of S. cerevisiae colony forming units being observed after a long exposure period (24 h) to high concentrations (800 mg/L) of both nanomaterials. Similarly, BN-PW and BN-PL showed a low capacity to induce the formation of reactive oxygen species in the studied conditions. Even at the highest concentration and exposure times, no major cytotoxicity indicators were observed in human cells and yeast. The results obtained in the present study provide novel insights into the safety of 2D BN nanomaterials, indicating no significant differences in the toxicological potential of similar commercial products with a distinct lateral size, which showed to be safe products in the concentrations and exposure conditions tested.


2021 ◽  
Author(s):  
Guotao Li ◽  
Zhengyu Zhang ◽  
Haofan Liu ◽  
Liandong Hu

Edible nanoemulsions to encapsulate, protect and deliver lipophilic functional ingredients are receiving increasing attention in the modern food industry.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 547
Author(s):  
Marina Ramal-Sanchez ◽  
Antonella Fontana ◽  
Luca Valbonetti ◽  
Alessandra Ordinelli ◽  
Nicola Bernabò ◽  
...  

Since its discovery, graphene and its multiple derivatives have been extensively used in many fields and with different applications, even in biomedicine. Numerous efforts have been made to elucidate the potential toxicity derived from their use, giving rise to an adequate number of publications with varied results. On this basis, the study of the reproductive function constitutes a good tool to evaluate not only the toxic effects derived from the use of these materials directly on the individual, but also the potential toxicity passed on to the offspring. By providing a detailed scientometric analysis, the present review provides an updated overview gathering all the research studies focused on the use of graphene and graphene-based materials in the reproductive field, highlighting the consequences and effects reported to date from experiments performed in vivo and in vitro and in different animal species (from Archea to mammals). Special attention is given to the oxidized form of graphene, graphene oxide, which has been recently investigated for its ability to increase the in vitro fertilization outcomes. Thus, the potential use of graphene oxide against infertility is hypothesized here, probably by engineering the spermatozoa and thus manipulating them in a safer and more efficient way.


Sign in / Sign up

Export Citation Format

Share Document