Molecular Analysis of cis-Acting Transciptional Regulatory Elements and Transcriptional Factors in the Bean Storage Protein Phaseolin Gene

2021 ◽  
Vol 22 (5) ◽  
pp. 2599
Author(s):  
Mégane Collobert ◽  
Ozvan Bocher ◽  
Anaïs Le Nabec ◽  
Emmanuelle Génin ◽  
Claude Férec ◽  
...  

About 8% of the human genome is covered with candidate cis-regulatory elements (cCREs). Disruptions of CREs, described as “cis-ruptions” have been identified as being involved in various genetic diseases. Thanks to the development of chromatin conformation study techniques, several long-range cystic fibrosis transmembrane conductance regulator (CFTR) regulatory elements were identified, but the regulatory mechanisms of the CFTR gene have yet to be fully elucidated. The aim of this work is to improve our knowledge of the CFTR gene regulation, and to identity factors that could impact the CFTR gene expression, and potentially account for the variability of the clinical presentation of cystic fibrosis as well as CFTR-related disorders. Here, we apply the robust GWAS3D score to determine which of the CFTR introns could be involved in gene regulation. This approach highlights four particular CFTR introns of interest. Using reporter gene constructs in intestinal cells, we show that two new introns display strong cooperative effects in intestinal cells. Chromatin immunoprecipitation analyses further demonstrate fixation of transcription factors network. These results provide new insights into our understanding of the CFTR gene regulation and allow us to suggest a 3D CFTR locus structure in intestinal cells. A better understand of regulation mechanisms of the CFTR gene could elucidate cases of patients where the phenotype is not yet explained by the genotype. This would thus help in better diagnosis and therefore better management. These cis-acting regions may be a therapeutic challenge that could lead to the development of specific molecules capable of modulating gene expression in the future.


2013 ◽  
Vol 368 (1620) ◽  
pp. 20120361 ◽  
Author(s):  
Jim R. Hughes ◽  
Karen M. Lower ◽  
Ian Dunham ◽  
Stephen Taylor ◽  
Marco De Gobbi ◽  
...  

We have combined the circular chromosome conformation capture protocol with high-throughput, genome-wide sequence analysis to characterize the cis -acting regulatory network at a single locus. In contrast to methods which identify large interacting regions (10–1000 kb), the 4C approach provides a comprehensive, high-resolution analysis of a specific locus with the aim of defining, in detail, the cis -regulatory elements controlling a single gene or gene cluster. Using the human α-globin locus as a model, we detected all known local and long-range interactions with this gene cluster. In addition, we identified two interactions with genes located 300 kb (NME4) and 625 kb (FAM173a) from the α-globin cluster.


1992 ◽  
Vol 286 (1) ◽  
pp. 179-185 ◽  
Author(s):  
C P Simkevich ◽  
J P Thompson ◽  
H Poppleton ◽  
R Raghow

The transcriptional activity of plasmid pCOL-KT, in which human pro alpha 1 (I) collagen gene upstream sequences up to -804 and most of the first intron (+474 to +1440) drive expression of the chloramphenicol acetyltransferase (CAT) gene [Thompson, Simkevich, Holness, Kang & Raghow (1991) J. Biol. Chem. 266, 2549-2556], was tested in a number of mesenchymal and non-mesenchymal cells. We observed that pCOL-KT was readily expressed in fibroblasts of human (IMR-90 and HFL-1), murine (NIH 3T3) and avian (SL-29) origin and in a human rhabdomyosarcoma cell line (A204), but failed to be expressed in human erythroleukaemia (K562) and rat pheochromocytoma (PC12) cells, indicating that the regulatory elements required for appropriate tissue-specific expression of the human pro alpha 1 (I) collagen gene were present in pCOL-KT. To delineate the nature of cis-acting sequences which determine the tissue specificity of pro alpha 1 (I) collagen gene expression, functional consequences of deletions in the promoter and first intron of pCOL-KT were tested in various cell types by transient expression assays. Cis elements in the promoter-proximal and intronic sequences displayed either a positive or a negative influence depending on the cell type. Thus deletion of fragments using EcoRV (nt -625 to -442 deleted), XbaI (-804 to -331) or SstII (+670 to +1440) resulted in 2-10-fold decreased expression in A204 and HFL-1 cells. The negative influences of deletions in the promoter-proximal sequences was apparently considerably relieved by deleting sequences in the first intron, and the constructs containing the EcoRV/SstII or XbaI/SstII double deletions were expressed to a much greater extent than either of the single deletion constructs. In contrast, the XbaI* deletion (nt -804 to -609), either alone or in combination with the intronic deletion, resulted in very high expression in all cells regardless of their collagen phenotype; the XbaI*/(-SstII) construct, which contained the intronic SstII fragment (+670 to +1440) in the reverse orientation, was not expressed in either mesenchymal or nonmesenchymal cells. Based on these results, we conclude that orientation-dependent interactions between negatively acting 5′-upstream sequences and the first intron determine the mesenchymal cell specificity of human pro alpha 1 (I) collagen gene transcription.


1989 ◽  
Vol 9 (11) ◽  
pp. 5219-5222
Author(s):  
A Celada ◽  
R Maki

The X box is a loosely conserved DNA sequence that is located upstream of all major histocompatibility class II genes and is one of the cis-acting regulatory elements. Despite the similarity between all X-box sequences, each promoter-proximal X box in the mouse appears to bind a separate nuclear factor.


1992 ◽  
Vol 12 (10) ◽  
pp. 4796-4805
Author(s):  
A C Prats ◽  
S Vagner ◽  
H Prats ◽  
F Amalric

Four forms of basic fibroblast growth factor (bFGF) are synthesized from the same mRNA, resulting from alternative initiations of translation at three CUG start codons and one AUG start codon. The CUG- and AUG-initiated forms have distinct intracellular localizations and can modify cell phenotypes differently, indicating that control of the alternative expression of the different forms of bFGF has an important impact on the cell. In this study, we investigated the roles of the mRNA 5' untranslated region and the alternatively translated region located between the CUG and AUG codons in the regulation of alternative translation of the different forms of bFGF. Deletions and site-directed mutagenesis were carried out in bFGF mRNA leader, and translation was studied in vitro and in vivo. The results enabled us to identify five cis-acting RNA elements (two in the 5' untranslated region and three in the alternatively translated region) involved in the regulation of either global or alternative initiation of translation. Each of these elements had a specific effect on the level of synthesis of the different forms of bFGF. Furthermore, we showed that the 5' untranslated region regulatory elements had different effects on bFGF translation, depending on the translation system used. These results suggest that bFGF translation is modulated by cis-acting elements corresponding to secondary or tertiary RNA structures, which could be the targets of cell-specific trans-acting factors.


2010 ◽  
Vol 33 (1) ◽  
pp. 190-197 ◽  
Author(s):  
Olfa Siala ◽  
Ikhlass Hadj Salem ◽  
Abdelaziz Tlili ◽  
Imen Ammar ◽  
Hanen Belguith ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5816 ◽  
Author(s):  
Lidong Hao ◽  
Xiuli Qiao

As one of the non-selective cation channel gene families, the cyclic nucleotide-gated channel (CNGC) gene family plays a vital role in plant physiological processes that are related to signal pathways, plant development, and environmental stresses. However, genome-wide identification and analysis of the CNGC gene family in maize has not yet been undertaken. In the present study, twelve ZmCNGC genes were identified in the maize genome, which were unevenly distributed on chromosomes 1, 2, 4, 5, 6, 7, and 8. They were classified into five major groups: Groups I, II, III, IVa, and IVb. Phylogenetic analysis showed that gramineous plant CNGC genes expanded unequally during evolution. Group IV CNGC genes emerged first, whereas Groups I and II appeared later. Prediction analysis of cis-acting regulatory elements showed that 137 putative cis-elements were related to hormone-response, abiotic stress, and organ development. Furthermore, 120 protein pairs were predicted to interact with the 12 ZmCNGC proteins and other maize proteins. The expression profiles of the ZmCNGC genes were expressed in tissue-specific patterns. These results provide important information that will increase our understanding of the CNGC gene family in maize and other plants.


Plant Science ◽  
2014 ◽  
Vol 217-218 ◽  
pp. 109-119 ◽  
Author(s):  
Carlos M. Hernandez-Garcia ◽  
John J. Finer

2012 ◽  
Vol 33 (1) ◽  
Author(s):  
Lidia A. Daimiel ◽  
María E. Fernández-Suárez ◽  
Sara Rodríguez-Acebes ◽  
Lorena Crespo ◽  
Miguel A. Lasunción ◽  
...  

DHCR24 (3β-hydroxysterol Δ24-reductase) catalyses the reduction of the C-24 double bond of sterol intermediates during cholesterol biosynthesis. DHCR24 has also been involved in cell growth, senescence and cellular response to oncogenic and oxidative stress. Despite its important roles, little is known about the transcriptional mechanisms controlling DHCR24 gene expression. We analysed the proximal promoter region and the cholesterol-mediated regulation of DHCR24. A putative SRE (sterol-regulatory element) at −98/−90 bp of the transcription start site was identified. Other putative regulatory elements commonly found in SREBP (SRE-binding protein)-targeted genes were also identified. Sterol responsiveness was analysed by luciferase reporter assays of approximately 1 kb 5′-flanking region of the human DHCR24 gene in HepG2 and SK-N-MC cells. EMSAs (electrophoretic mobility-shift assays) and ChIP (chromatin immunoprecipitation) assays demonstrated cholesterol-dependent recruitment and binding of SREBPs to the putative SRE. Given the presence of several CACCC-boxes in the DHCR24 proximal promoter, we assessed the role of KLF5 (Krüppel-like factor 5) in androgen-regulated DHCR24 expression. DHT (dihydrotestosterone) increased DHCR24 expression synergistically with lovastatin. However, DHT was unable to activate the DHCR24 proximal promoter, whereas KLF5 did, indicating that this mechanism is not involved in the androgen-induced stimulation of DHCR24 expression. The results of the present study allow the elucidation of the mechanism of regulation of the DHCR24 gene by cholesterol availability and identification of other putative cis-acting elements which may be relevant for the regulation of DHCR24 expression.


Sign in / Sign up

Export Citation Format

Share Document