Down-Regulation of Promoter Methylation Level of CD4 Gene After MDV Infection in MD-Susceptible Chicken Line

2014 ◽  
pp. 51-62
Author(s):  
Juan Luo ◽  
Ying Yu ◽  
Huanmin Zhang ◽  
Fei Tian ◽  
Shuang Chang ◽  
...  
2011 ◽  
Vol 5 (Suppl 4) ◽  
pp. S7 ◽  
Author(s):  
Juan Luo ◽  
Ying Yu ◽  
Huanmin Zhang ◽  
Fei Tian ◽  
Shuang Chang ◽  
...  

2020 ◽  
Vol 20 (18) ◽  
pp. 2274-2284
Author(s):  
Faroogh Marofi ◽  
Jalal Choupani ◽  
Saeed Solali ◽  
Ghasem Vahedi ◽  
Ali Hassanzadeh ◽  
...  

Objective: Zoledronic Acid (ZA) is one of the common treatment choices used in various boneassociated conditions. Also, many studies have investigated the effect of ZA on Osteoblastic-Differentiation (OSD) of Mesenchymal Stem Cells (MSCs), but its clear molecular mechanism(s) has remained to be understood. It seems that the methylation of the promoter region of key genes might be an important factor involved in the regulation of genes responsible for OSD. The present study aimed to evaluate the changes in the mRNA expression and promoter methylation of central Transcription Factors (TFs) during OSD of MSCs under treatment with ZA. Materials and Methods: MSCs were induced to be differentiated into the osteoblastic cell lineage using routine protocols. MSCs received ZA during OSD and then the methylation and mRNA expression levels of target genes were measured by Methylation Specific-quantitative Polymerase Chain Reaction (MS-qPCR) and real.time PCR, respectively. The osteoblastic differentiation was confirmed by Alizarin Red Staining and the related markers to this stage. Results: Gene expression and promoter methylation level for DLX3, FRA1, ATF4, MSX2, C/EBPζ, and C/EBPa were up or down-regulated in both ZA-treated and untreated cells during the osteodifferentiation process on days 0 to 21. ATF4, DLX3, and FRA1 genes were significantly up-regulated during the OSD processes, while the result for MSX2, C/EBPζ, and C/EBPa was reverse. On the other hand, ATF4 and DLX3 methylation levels gradually reduced in both ZA-treated and untreated cells during the osteodifferentiation process on days 0 to 21, while the pattern was increasing for MSX2 and C/EBPa. The methylation pattern of C/EBPζ was upward in untreated groups while it had a downward pattern in ZA-treated groups at the same scheduled time. The result for FRA1 was not significant in both groups at the same scheduled time (days 0-21). Conclusion: The results indicated that promoter-hypomethylation of ATF4, DLX3, and FRA1 genes might be one of the mechanism(s) controlling their gene expression. Moreover, we found that promoter-hypermethylation led to the down-regulation of MSX2, C/EBP-ζ and C/EBP-α. The results implicate that ATF4, DLX3 and FRA1 may act as inducers of OSD while MSX2, C/EBP-ζ and C/EBP-α could act as the inhibitor ones. We also determined that promoter-methylation is an important process in the regulation of OSD. However, yet there was no significant difference in the promoter-methylation level of selected TFs in ZA-treated and control cells, a methylation- independent pathway might be involved in the regulation of target genes during OSD of MSCs.


2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Xin Zhao ◽  
Di Cao ◽  
Zhangyong Ren ◽  
Zhe Liu ◽  
Shaocheng Lv ◽  
...  

Abstract Background: Hypermethylation of gene promoters plays an important role in tumorigenesis. The present study aimed to identify and validate promoter methylation-driven genes (PMDGs) for pancreatic ductal adenocarcinoma (PDAC). Methods: Based on GSE49149 and the PDAC cohort of The Cancer Genome Atlas (TCGA), differential analyses of promoter methylation, correlation analysis, and Cox regression analysis were performed to identify PMDGs. The promoter methylation level was assessed by bisulfite sequencing polymerase chain reaction (BSP) in paired tumor and normal tissues of 72 PDAC patients. Kaplan−Meier survival analyses were performed to evaluate the clinical value of PMDGs. Results: In GSE49149, the β-value of the dipeptidyl peptidase like 6 (DPP6) promoter was significantly higher in tumor compared with normal samples (0.50 vs. 0.24, P<0.001). In the PDAC cohort of TCGA, the methylation level of the DPP6 promoter was negatively correlated with mRNA expression (r = −0.54, P<0.001). In a multivariate Cox regression analysis, hypermethylation of the DPP6 promoter was an independent risk factor for PDAC (hazard ratio (HR) = 543.91, P=0.002). The results of BSP revealed that the number of methylated CG sites in the DPP6 promoter was greater in tumor samples than in normal samples (7.43 vs. 2.78, P<0.001). The methylation level of the DPP6 promoter was moderately effective at distinguishing tumor from normal samples (area under ROC curve (AUC) = 0.74, P<0.001). Hypermethylation of the DPP6 promoter was associated with poor overall (HR = 3.61, P<0.001) and disease-free (HR = 2.01, P=0.016) survivals for PDAC patients. Conclusion: These results indicate that DPP6 promoter methylation is a potential prognostic biomarker for PDAC.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi105-vi105
Author(s):  
Radhika Mathur ◽  
Yalan Zhang ◽  
Matthew Grimmer ◽  
Chibo Hong ◽  
Mitchel Berger ◽  
...  

Abstract Low-grade gliomas (LGGs), which include grade II astrocytoma and grade II oligodendroglioma, inevitably recur despite aggressive treatment with surgery, and sometimes, with radiation and the chemotherapeutic agent temozolomide (TMZ). The clinical benefit of TMZ in LGG is unclear, and a subset of TMZ-treated LGGs recur with hypermutation in association with malignant progression to high-grade tumors. It is currently unknown why some TMZ-treated LGGs recur with hypermutation while others do not. O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that reverses mutagenic lesions induced by TMZ. The amount of MGMT protein in a cell is regulated at the epigenetic level by promoter methylation. Here, we hypothesize that epigenetic silencing of MGMT by promoter methylation facilitates TMZ-induced mutagenesis and contributes to the development of hypermutation. We demonstrate in a cohort of 37 TMZ-treated patients with an initial diagnosis of IDH-mutant LGG that methylation level of the MGMT promoter in initial untreated tumors is significantly associated with hypermutation at recurrence. We also confirm our previous finding that methylation level of the MGMT promoter in recurrent hypermutated tumors is higher than in recurrent tumors that are not hypermutated. These results provide a plausible mechanistic basis for observed differences in propensity of TMZ-treated LGG patients to develop hypermutation at recurrence. Furthermore, they establish the potential of MGMT promoter methylation level to inform treatment decisions in the clinic for patients with newly diagnosed LGG.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 807 ◽  
Author(s):  
Pan ◽  
Liu ◽  
Wen ◽  
Liu ◽  
Zhang ◽  
...  

Whole-genome bisulfite sequencing generates a comprehensive profiling of the gene methylation levels, but is limited by a high cost. Recent studies have partitioned the genes into landmark genes and target genes and suggested that the landmark gene expression levels capture adequate information to reconstruct the target gene expression levels. This inspired us to propose that the methylation level of the promoters in landmark genes might be adequate to reconstruct the promoter methylation level of target genes, which would eventually reduce the cost of promoter methylation profiling. Here, we propose a deep learning model called Deep-Gene Promoter Methylation (D-GPM) to predict the whole-genome promoter methylation level based on the promoter methylation profile of the landmark genes from The Cancer Genome Atlas (TCGA). D-GPM-15%-7000 × 5, the optimal architecture of D-GPM, acquires the least overall mean absolute error (MAE) and the highest overall Pearson correlation coefficient (PCC), with values of 0.0329 and 0.8186, respectively, when testing data. Additionally, the D-GPM outperforms the regression tree (RT), linear regression (LR), and the support vector machine (SVM) in 95.66%, 92.65%, and 85.49% of the target genes by virtue of its relatively lower MAE and in 98.25%, 91.00%, and 81.56% of the target genes based on its relatively higher PCC, respectively. More importantly, the D-GPM predominates in predicting 79.86% and 78.34% of the target genes according to the model distribution of the least MAE and the highest PCC, respectively.


2009 ◽  
Vol 117 (4) ◽  
pp. 445-456 ◽  
Author(s):  
David Capper ◽  
Timo Gaiser ◽  
Christian Hartmann ◽  
Antje Habel ◽  
Wolf Mueller ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Xiu Hong Yang ◽  
Bao Long Zhang ◽  
Xiao Meng Zhang ◽  
Jin Dong Tong ◽  
Yan Hong Gu ◽  
...  

To explore whether epigallocatechin-3-gallate (EGCG) improves renal damage in diabetic db/db mice and high-glucose- (HG-) induced injury in HK-2 cells by regulating the level of Klotho gene promoter methylation. Western blotting was used to detect the protein expression levels of DNA methyltransferase 1 (DNMT1), DNMT3a, DNMT3b, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA), and Klotho. The methylation level of the Klotho gene promoter was detected by pyrosequencing. Chromatin immunoprecipitation was used to detect the binding of the Klotho gene promoter to DNMT1 and DNMT3a. The expression of oxidative stress markers (reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), and 8-hydroxy-2′-deoxyguanosine (8-OHdG)) and inflammatory cytokines (interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α)) in kidney homogenates was also measured using ELISA. Klotho and DNMT3b protein expression was upregulated, while DNMT1, DNMT3a, TGF-β1, and α-SMA protein expression was downregulated after EGCG treatment. EGCG treatment also reduced the methylation level of the Klotho gene promoter as well as the binding of DNMT3a to the Klotho gene promoter. In addition, EGCG treatment significantly decreased the levels of ROS, MDA, 8-OHdG, IL-1β, IL-6, and TNF-α and increased the levels of CAT and SOD. Under HG conditions, EGCG regulated Klotho gene promoter methylation via DNMT3a and decreased the methylation level of the Klotho gene promoter, thereby upregulating the expression of the Klotho protein to exert its protective effect.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaodong Li ◽  
Shufang Bu ◽  
Ran Ran Pan ◽  
Cong Zhou ◽  
Kun Qu ◽  
...  

Abstract Background The goal of our study is to investigate whether the methylation levels of AHCY and CBS promoters are related to the risk of cerebral infarction by detecting the methylation level of AHCY and CBS genes. Methods We extracted peripheral venous blood from 152 patients with cerebral infarction and 152 gender- and age-matched healthy controls, and determined methylation levels of AHCY and CBS promoters using quantitative methylation-specific polymerase chain reaction. We used the percentage of methylation reference (PMR) to indicate gene methylation level. Results We compared the promoter methylation levels of two genes (AHCY and CBS) in peripheral blood DNA between the cerebral infarction case group and the control group. Our study showed no significant difference in AHCY promoter methylation between case and control. Subgroup analysis by gender showed that the methylation level of AHCY in males in the case group was lower than that in the control group, but the difference was not statistically significant in females. In a subgroup analysis by age, there was no significant difference in the AHCY methylation level between the case and control in the young group (≤44 years old). However, the level of AHCY gene methylation in the middle-aged group (45–59 years old) was significantly higher and the aged group (≥60 years old) was significantly lower than that in the control groups. However, CBS promoter methylation levels were significantly lower in the case group than in the control group (median PMR: 70.20% vs 104.10%, P = 3.71E-10). In addition, the CBS methylation levels of males and females in the case group were significantly lower than those in the control group (male: 64.33% vs 105%, P = 2.667E-08; female: 78.05% vs 102.8%, P = 0.003). We also found that the CBS levels in the young (23–44), middle-aged (45–59), and older (60–90) groups were significantly lower than those in the control group (young group: 69.97% vs 114.71%; P = 0.015; middle-aged group: 56.04% vs 91.71%; P = 6.744E-06; older group: 81.6% vs 119.35%; P = 2.644E-04). Our ROC curve analysis of CBS hypomethylation showed an area under the curve of 0.713, a sensitivity of 67.4%, and a specificity of 74.0%. Conclusion Our study suggests that hypomethylation of the CBS promoter may be closely related to the risk of cerebral infarction and may be used as a non-invasive diagnostic biomarker for cerebral infarction.


Sign in / Sign up

Export Citation Format

Share Document