Effects of changes in operating conditions on the iron corrosion rate in zerovalent iron columns

Author(s):  
E Berardozzi ◽  
J Galindez ◽  
F Einschlag
2018 ◽  
Vol 5 (6) ◽  
pp. 172242 ◽  
Author(s):  
Xinyu Wang ◽  
Wei Wang ◽  
Greg Lowry ◽  
Xiaoyan Li ◽  
Yajie Guo ◽  
...  

A method developed based on the capillary effect and capillary condensation theory was used to synthesize an innovative Fe/C/Pd composite in this study. This composite (Fe@CNTs@Pd) consists of carbon nanotubes (CNTs) with nanoscale zerovalent iron (NZVI) on the inner surface and palladium nanoparticles supported on the outer surface of CNTs. This structure successfully addresses the problems of high iron corrosion rate and lower utilization rate of hydrogen in the application of bimetal nanoparticles for trichloroethylene (TCE) removal. TCE degradation experiments and electrochemical tests were conducted to investigate the material properties and reaction mechanisms of the composite. It is found that the prepared composite material contribute a high level of TCE dechlorination rate and substantially reduced hydrogen production during iron corrosion in water compared with the conventional CNTs-supported bimetal materials (Fe/Pd@CNTs). Hydrogen spillover effect helps the reactivity of Fe@CNTs@Pd for TCE degradation and suppressed the galvanic cell effect, which results in a stronger resistance to corrosion. Although the K obs of Fe@CNTs@Pd was 16.87% lower than that of Fe/Pd@CNTs, the hydrogen production rate of Fe@CNTs@Pd was 10 times slower than that of Fe/Pd@CNTs. Therefore, Fe@CNTs@Pd shows a significant reduction in the corrosion rate at a cost of slightly slower degradation of TCE. In sum, the prepared composites demonstrate important characteristics, including alleviating NZVI agglomeration, maintaining high TCE removal efficiency and reducing the corrosion of NZVI.


2001 ◽  
Vol 1 (3) ◽  
pp. 91-96 ◽  
Author(s):  
L.J. Hem ◽  
E.A. Vik ◽  
A. Bjørnson-Langen

In 1995 the new Skullerud water treatment plant was put into operation. The new water treatment includes colour removal and corrosion control with an increase of pH, alkalinity and calcium concentration in addition to the old treatment, which included straining and chlorination only. Comparative measurements of internal corrosion were conducted before and after the installation of the new treatment plant. The effect of the new water treatment on the internal corrosion was approximately a 20% reduction in iron corrosion and a 70% reduction in copper corrosion. The heavy metals content in standing water was reduced by approximately 90%. A separate internal corrosion monitoring programme was conducted, studying the effects of other water qualities on the internal corrosion rate. Corrosion coupons were exposed to the different water qualities for nine months. The results showed that the best protection of iron was achieved with water supersaturated with calcium carbonate. Neither a high content of free carbon dioxide or the use of the corrosion inhibitor sodium silicate significantly reduced the iron corrosion rate compared to the present treated water quality. The copper corrosion rate was mainly related to the pH in the water.


Author(s):  
Vaidyanathan Krishnan ◽  
J. S. Kapat ◽  
Y. H. Sohn ◽  
V. H. Desai

In recent times, the use of coal gas in gas turbines has gained a lot of interest, as coal is quite abundant as a primary source of energy. However, use of coal gas produces a few detrimental effects that need closer attention. This paper concentrates on one such effect, namely hot corrosion, where trace amounts of sulfur can cause corrosion (or sulfidation) of hot and exposed surfaces, thereby reducing the life of the material. In low temperature hot corrosion, which is the focus of this paper, transport of SO2 from the hot gas stream is the primary process that leads to a chain of events, ultimately causing hot corrosion. The corrosion rate depends on SO2 mass flux to the wall as well as wall surface temperature, both of which are affected in the presence of any film cooling. An analytical model is developed to describe the associated transport phenomena of both heat and mass in the presence of film cooling The model predicts how corrosion rates may be affected under operating conditions. It is found that although use of film cooling typically leads to lower corrosion rate, there are combinations of operating parameters under which corrosion rate can actually increase in the presence of film cooling.


Author(s):  
E. Platacis ◽  
I. Bucenieks ◽  
F. Muktupavel ◽  
A. Shishko

Search of new energy sources draws the increasing attention to use for this purpose of reactors. In the Europe some years the program EUROATOM uniting scientific of the many countries for the decision of constructive problems at designing of fusion reactors operates. One of the main things in this program is the problem of liquid metals breeder blanket behaviour. Structural material of blanket should meet high requirements because of extreme operating conditions. Therefore the knowledge of the effect of metals flow velocity, temperatures and also a neutron irradiation and a magnetic field on the corrosion processes are necessary. At the moment the eutectic lead -lithium (Pb-17Li) is considered as the most suitable tritium breeder material [1–3]. In turn as a structural material have been tested both many austenitic and ferritic-martensitic steels [2–4]. As the optimum variant is considered steel EUROFER 97, which corrosion rate in liquid Pb-17Li eutectic is the least [3,4]. However, these results have been received without taking into account influence of a strong magnetic field. At the same time, this influence should be essential, as because of change of hydrodynamics of a liquid metal flow, and because of interaction of a magnetic field with a ferromagnetic steel. It has been shown in [5,6] that the magnetic field leads to increase of corrosion rate for austenitic (316L) and martensitic (1,4914) steels. Experimental data for EUROFER 97, and also a theoretical substantiation of the phenomenon are absent, that creates essential difficulties for forecasting working capacity of blanket construction. The aim of presented work were the theoretical and experimental investigations of magnetic field influence on the corrosion of EUROFER 97 steel exposed to flowing Pb-17 Li in specific designed loop.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chinedu I. Ossai

The flow of crude oil, water, and gas from the reservoirs through the wellheads results in its deterioration. This deterioration which is due to the impact of turbulence, corrosion, and erosion significantly reduces the integrity of the wellheads. Effectively managing the wellheads, therefore, requires the knowledge of the extent to which these factors contribute to its degradation. In this paper, the contribution of some operating parameters (temperature, CO2 partial pressure, flow rate, and pH) on the corrosion rate of oil and gas wellheads was studied. Field data from onshore oil and gas fields were analysed with multiple linear regression model to determine the dependency of the corrosion rate on the operating parameters. ANOVA, value test, and multiple regression coefficients were used in the statistical analysis of the results, while in previous experimental results, de Waard-Milliams models and de Waard-Lotz model were used to validate the modelled wellhead corrosion rates. The study shows that the operating parameters contribute to about 26% of the wellhead corrosion rate. The predicted corrosion models also showed a good agreement with the field data and the de Waard-Lotz models but mixed results with the experimental results and the de Waard-Milliams models.


2020 ◽  
Vol 12 (6) ◽  
pp. 2455
Author(s):  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Dhafer Al Shehri ◽  
Mohamed Bahgat

The oil and gas production operations suffer from scale depositions. The scale precipitations have a damaging impact on the reservoir pores, perforations, downhole and completion equipment, pipeline network, wellhead chokes, and surface facilities. Hydrocarbon production possibly decreased because of the scale accumulation in the well tubular, leading to a well plugging, this requires wells to be shut-in in severe cases to perform a clean-out job. Therefore, scale deposition is badly affecting petroleum economics. This research aims to design a scale dissolver with low cost, non-damaging for the well equipment and has a high performance at the field operating conditions. This paper presents a novel non-corrosive dissolver for sulfate and sulfide composite scale in alkaline pH and works at low-temperature conditions. The scale samples were collected from a production platform from different locations. A complete description of the scale samples was performed as X-ray diffraction (XRD) and X-ray fluorescence (XRF). The new scale dissolver was prepared in different concentrations to examine its dissolution efficiency for the scale with time at low temperatures. The experimental design studied the solid to fluid ratio, temperature, solubility time, and dissolution efficiency in order to achieve the optimum and most economic performance of solubility in terms of high dissolution efficiency with the smallest possible amount of scale dissolver. A solubility comparison was performed with other commercial-scale-dissolvers and the corrosion rate was tested. The experimental work results demonstrated the superior performance of the new scale dissolver. The new scale dissolver showed a solubility efficiency of 91.8% at a low temperature of 45 °C and 79% at 35 °C. The new scale dissolver showed a higher solubility ratio for the scale sample than the ethylenediaminetetraacetic acid (EDTA) (20 wt. %), diethylenetriamine pentaacetic acid (DTPA) (20 wt. %), and HCl (10 wt. %). The corrosion rate for the new non-corrosive dissolver was 0.01357 kg/m2 (0.00278 lb./ft²) which was considered a very low rate and non-damaging for the equipment. The low corrosive effect of the new dissolver will save the extra cost of adding the corrosion inhibitors and save the equipment from the damaging effect of the corrosive acids.


Author(s):  
Muntazir Abbas ◽  
Mahmood Shafiee ◽  
Nigel Simms

Abstract The composition of seawater plays a very significant role in determining the severity of corrosion process in marine assets. The influential contributors to the general and pitting corrosions in marine structures include temperature, dissolved oxygen (DO), salinity, PH, chlorides, pollutants, nutrients, and microbiological activities in seawater. The Cu-Ni (90/10) alloy is increasingly used in marine applications such as heat exchangers and marine pipelines because of its excellent corrosion resistant properties. Despite the significant advancements in corrosion shielding procedures, complete stoppage of corrosion induced metal loss, especially under rugged marine environments, is practically impossible. The selection of appropriate metal thickness is merely a multifaceted decision because of the high variability in operating conditions and associated corrosion rate in various seawater bodies across the globe. The present research study aims to analyze the early phase of corrosion behavior of Cu-Ni (90/10) alloy in open-sea conditions as well as in pollutant-rich coastal waters of the Arabian Sea. Test samples were placed under natural climatic conditions of selected sites, followed by the mass loss and corrosion rate evaluation. The corrosion rate in the pollutant-rich coastal waters was around five times higher than in the natural seawater. A case study on marine condenser (fitted with of Cu-Ni 90/10 alloy tubes) is presented, and a risk-based inspection (RBI) plan is developed to facilitate equipment designers, operators, and maintainers to consider the implications of warm and polluted seawater on equipment reliability, service life, and subsequent health inspection/ maintenance.


2012 ◽  
Vol 49 (No. 1) ◽  
pp. 22-26
Author(s):  
M. Augustin ◽  
M. Ščerbejová

Selected anticorrosion preserving agents were subjected to a comparison on the basis of tests made under operating conditions. Resistance of materials to corrosion markedly varies with operating conditions and impact of outer environment with the most important factors influencing the corrosion rate being SO<sub>2</sub> content, temperature and humidity. Relative protective efficiency of preserving agents was assessed on the basis of weight losses of protected and unprotected samples. It was found out that the material&rsquo;s resistance to corrosion is significantly depending on warehousing conditions (SO<sub>2</sub>, temperature, humidity, etc.) and on the quality of the applied preservant. Depending on various environments, the values of relative protective efficiency of water-soluble preservant and preserving agent based on vegetable oils were ranging from 38&ndash;87% and 47&ndash;75%, respectively.


2011 ◽  
Vol 374-377 ◽  
pp. 1854-1857
Author(s):  
Yue Xian Liu ◽  
Nan Zhe Zhang

A and B two-component solid chemical cleanser was prepared in order to clean the fouling in floor heating pipe effectively. In stated cleaning conditions, the fouling removal rate of this cleanser was greater than 97%, cast iron corrosion rate was much lower than 6 g/(m2•h) and brass corrosion rate was much lower than 2 g/(m2•h). The cleanser is solid, so its storage and transportation are convenient and its usage is easy and safe.


Sign in / Sign up

Export Citation Format

Share Document