- AN INSIGHT INTO HORIZONTAL GENE TRANSFER TRIGGERING WIDESPREAD ANTIMICROBIAL RESISTANCE IN BACTERIA

2014 ◽  
pp. 202-221 ◽  
2009 ◽  
Vol 364 (1527) ◽  
pp. 2275-2289 ◽  
Author(s):  
Anders Norman ◽  
Lars H. Hansen ◽  
Søren J. Sørensen

Comparative whole-genome analyses have demonstrated that horizontal gene transfer (HGT) provides a significant contribution to prokaryotic genome innovation. The evolution of specific prokaryotes is therefore tightly linked to the environment in which they live and the communal pool of genes available within that environment. Here we use the term supergenome to describe the set of all genes that a prokaryotic ‘individual’ can draw on within a particular environmental setting. Conjugative plasmids can be considered particularly successful entities within the communal pool, which have enabled HGT over large taxonomic distances. These plasmids are collections of discrete regions of genes that function as ‘backbone modules’ to undertake different aspects of overall plasmid maintenance and propagation. Conjugative plasmids often carry suites of ‘accessory elements’ that contribute adaptive traits to the hosts and, potentially, other resident prokaryotes within specific environmental niches. Insight into the evolution of plasmid modules therefore contributes to our knowledge of gene dissemination and evolution within prokaryotic communities. This communal pool provides the prokaryotes with an important mechanistic framework for obtaining adaptability and functional diversity that alleviates the need for large genomes of specialized ‘private genes’.


2016 ◽  
Author(s):  
Kevin S. Bonham ◽  
Benjamin E. Wolfe ◽  
Rachel J. Dutton

AbstractAcquisition of genes through horizontal gene transfer (HGT) allows microbes to rapidly gain new capabilities and adapt to new or changing environments. Identifying widespread HGT regions within multispecies microbiomes can pinpoint the molecular mechanisms that play key roles in microbiome assembly. We sought to identify horizontally transferred genes within a model microbiome, the cheese rind. Comparing 31 newly-sequenced and 134 previously sequenced bacterial isolates from cheese rinds, we identified over 200 putative horizontally transferred genomic regions containing 4,733 protein coding genes. The largest of these regions are enriched for genes involved in siderophore acquisition, and are widely distributed in cheese rinds in both Europe and the US. These results suggest that horizontal gene transfer (HGT) is prevalent in cheese rind microbiomes, and the identification of genes that are frequently transferred in a particular environment may provide insight into the selective forces shaping microbial communities.


2021 ◽  
Vol 1 (1) ◽  
pp. 3-24
Author(s):  
Md. Jannat Hossain ◽  
Youssef Attia ◽  
Fatimah Muhammad Ballah ◽  
Md. Saiful Islam ◽  
Md. Abdus Sobur ◽  
...  

Antimicrobial resistance (AMR) in Salmonella in poultry poses a serious human health threat as it has zoonotic importance. Poultry is often linked with outbreaks of Salmonella-associated foodborne illness. Since antimicrobials are heavily used in poultry in Bangladesh, multidrug-resistant (MDR) Salmonella is quite frequently found there. MDR Salmonella is challenging to treat with antimicrobials and often causes a severe economic loss in the poultry sector. By horizontal gene transfer and/or evolutionary mutations, antimicrobials primarily exert selection pressure that contributes to antimicrobials resistance. In addition, resistance patterns can vary with variations in time and space. Without having prior knowledge of resistance patterns, no effective drugs could be prescribed. Therefore, it is crucial to have updated knowledge on the status of AMR in Salmonella in Bangladesh for effective treatment and management of the flocks against salmonellosis. There are several review articles on AMR in Salmonella in poultry in Bangladesh; they lack the whole scenario of the country and particularly do not have enough data on the poultry environment. Considering this scenario, in this review, we have focused on AMR in Salmonella in poultry in Bangladesh (2011–2021), with particular emphasis on data from the poultry and farm environments on a divisional zone basis.


2016 ◽  
Vol 7 ◽  
Author(s):  
Christian J. H. von Wintersdorff ◽  
John Penders ◽  
Julius M. van Niekerk ◽  
Nathan D. Mills ◽  
Snehali Majumder ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara J. Weaver ◽  
Davi R. Ortega ◽  
Matthew H. Sazinsky ◽  
Triana N. Dalia ◽  
Ankur B. Dalia ◽  
...  

Abstract Natural transformation is the process by which bacteria take up genetic material from their environment and integrate it into their genome by homologous recombination. It represents one mode of horizontal gene transfer and contributes to the spread of traits like antibiotic resistance. In Vibrio cholerae, a type IVa pilus (T4aP) is thought to facilitate natural transformation by extending from the cell surface, binding to exogenous DNA, and retracting to thread this DNA through the outer membrane secretin, PilQ. Here, we use a functional tagged allele of VcPilQ purified from native V. cholerae cells to determine the cryoEM structure of the VcPilQ secretin in amphipol to ~2.7 Å. We use bioinformatics to examine the domain architecture and gene neighborhood of T4aP secretins in Proteobacteria in comparison with VcPilQ. This structure highlights differences in the architecture of the T4aP secretin from the type II and type III secretion system secretins. Based on our cryoEM structure, we design a series of mutants to reversibly regulate VcPilQ gate dynamics. These experiments support the idea of VcPilQ as a potential druggable target and provide insight into the channel that DNA likely traverses to promote the spread of antibiotic resistance via horizontal gene transfer by natural transformation.


2008 ◽  
Vol 9 (2) ◽  
pp. 115-126 ◽  
Author(s):  
Patrick Boerlin ◽  
Richard J. Reid-Smith

AbstractNew concepts have emerged in the past few years that help us to better understand the emergence and spread of antimicrobial resistance (AMR). These include, among others, the discovery of the mutator state and the concept of mutant selection window for resistances emerging primarily through mutations in existing genes. Our understanding of horizontal gene transfer has also evolved significantly in the past few years, and important new mechanisms of AMR transfer have been discovered, including, among others, integrative conjugative elements and ISCR(insertionsequences withcommonregions) elements. Simultaneously, large-scale studies have helped us to start comprehending the immense and yet untapped reservoir of both AMR genes and mobile genetic elements present in the environment. Finally, new PCR- and DNA sequencing-based techniques are being developed that will allow us to better understand the epidemiology of classical vectors of AMR genes, such as plasmids, and to monitor them in a more global and systematic way.


2019 ◽  
Author(s):  
Yiqin Deng ◽  
Haidong Xu ◽  
Youlu Su ◽  
Songlin Liu ◽  
Liwen Xu ◽  
...  

Abstract Background Horizontal gene transfer (HGT), which is affected by environmental pollution and climate change, promotes genetic communication, changing bacterial pathogenicity and drug resistance. However, few studies have been conducted on the effect of HGT on the high pathogenicity and drug resistance of the opportunistic pathogen Vibrio harveyi .Results V. harveyi 345 that was multidrug resistant and infected Epinephelus oanceolutus was isolated from a diseased organism in Shenzhen, Southern China, an important and contaminated aquaculture area. Analysis of the entire genome sequence predicted 5,678 genes including 487 virulence genes contributing to bacterial pathogenesis and 25 antibiotic-resistance genes (ARGs) contributing to antimicrobial resistance. Five ARGs ( tetm , tetb , qnrs , dfra17 , and sul2 ) and one virulence gene (CU052_28670) on the pAQU-type plasmid p345-185, provided direct evidence for HGT. Comparative genome analysis of 31 V. harveyi strains indicated that 217 genes and 7 gene families, including a class C beta-lactamase gene, a virulence-associated protein D gene, and an OmpA family protein gene were specific to strain V. harveyi 345. These genes could contribute to HGT or be horizontally transferred from other bacteria to enhance the virulence or antibiotic resistance of 345. Mobile genetic elements in 71 genomic islands encoding virulence factors for three type III secretion proteins and 13 type VI secretion system proteins, and two incomplete prophage sequences were detected that could be HGT transfer tools. Evaluation of the complete genome of V. harveyi 345 and comparative genomics indicated genomic exchange, especially exchange of pathogenic genes and drug-resistance genes by HGT contributing to pathogenicity and drug resistance. Climate change and continued environmental deterioration are expected to accelerate the HGT of V. harveyi , increasing its pathogenicity and drug resistance.Conclusion This study provides timely information for further analysis of V. harveyi pathogenesis and antimicrobial resistance and developing pollution control measurements for coastal areas.


Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 890
Author(s):  
Eva Cunha ◽  
Rita Janela ◽  
Margarida Costa ◽  
Luís Tavares ◽  
Ana Salomé Veiga ◽  
...  

Periodontal disease (PD) is one of the most common diseases in dogs. Although previous studies have shown the potential of the antimicrobial peptide nisin for PD control, there is no information regarding its influence in the development of antimicrobial resistance or horizontal gene transfer (HGT). Nisin’s mutant prevention concentration (MPC) and selection window (MSW) were determined for a collection of canine oral enterococci. Isolates recovered after the determination of the MPC values were characterized for their antimicrobial profile and its nisin minimum inhibitory and bactericidal concentrations. The potential of vanA HGT between Enterococcus faecium CCGU36804 and nine clinical canine staphylococci and enterococci was evaluated. Nisin MPC values ranged from 400 to more than 600 μg/mL. In comparison with the original enterococci collection, the isolates recovered after the determination of the nisin MPC showed increased resistance towards amoxicillin/clavulanate (5%), vancomycin (5%), enrofloxacin (10%), gentamicin (10%) and imipenem (15%). The HGT of vanA gene was not observed. This work showed that nisin selective pressure may induce changes in the bacteria’s antimicrobial resistance profile but does not influence horizontal transfer of vanA gene. To our knowledge, this is the first report of nisin’s MPC and MSW determination regarding canine enterococci.


mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Rob J. L. Willems ◽  
Janetta Top ◽  
Willem van Schaik ◽  
Helen Leavis ◽  
Marc Bonten ◽  
...  

ABSTRACT Enterococcus faecium has recently emerged as an important multiresistant nosocomial pathogen. Defining population structure in this species is required to provide insight into the existence, distribution, and dynamics of specific multiresistant or pathogenic lineages in particular environments, like the hospital. Here, we probe the population structure of E. faecium using Bayesian-based population genetic modeling implemented in Bayesian Analysis of Population Structure (BAPS) software. The analysis involved 1,720 isolates belonging to 519 sequence types (STs) (491 for E. faecium and 28 for Enterococcus faecalis). E. faecium isolates grouped into 13 BAPS (sub)groups, but the large majority (80%) of nosocomial isolates clustered in two subgroups (2-1 and 3-3). Phylogenetic and eBURST analysis of BAPS groups 2 and 3 confirmed the existence of three separate hospital lineages (17, 18, and 78), highlighting different evolutionary trajectories for BAPS 2-1 (lineage 78) and 3-3 (lineage 17 and lineage 18) isolates. Phylogenomic analysis of 29 E. faecium isolates showed agreement between BAPS assignment of STs and their relative positions in the phylogenetic tree. Odds ratio calculation confirmed the significant association between hospital isolates with BAPS 3-3 and lineages 17, 18, and 78. Admixture analysis showed a scarce number of recombination events between the different BAPS groups. For the E. faecium hospital population, we propose an evolutionary model in which strains with a high propensity to colonize and infect hospitalized patients arise through horizontal gene transfer. Once adapted to the distinct hospital niche, this subpopulation becomes isolated, and recombination with other populations declines. IMPORTANCE Multiresistant Enterococcus faecium has become one of the most important nosocomial pathogens, causing increasing numbers of nosocomial infections worldwide. Here, we used Bayesian population genetic analysis to identify groups of related E. faecium strains and show a significant association of hospital and farm animal isolates to different genetic groups. We also found that hospital isolates could be divided into three lineages originating from sequence types (STs) 17, 18, and 78. We propose that, driven by the selective pressure in hospitals, the three hospital lineages have arisen through horizontal gene transfer, but once adapted to the distinct pathogenic niche, this population has become isolated and recombination with other populations declines. Elucidation of the population structure is a prerequisite for effective control of multiresistant E. faecium since it provides insight into the processes that have led to the progressive change of E. faecium from an innocent commensal to a multiresistant hospital-adapted pathogen.


2021 ◽  
Vol 13 (9) ◽  
pp. 5031
Author(s):  
Anastasia A. Ivanova ◽  
Kirill K. Miroshnikov ◽  
Igor Y. Oshkin

The family Gemmataceae accomodates aerobic, chemoorganotrophic planctomycetes with large genome sizes, is mostly distributed in freshwater and terrestrial environments. However, these bacteria have recently also been found in locations relevant to human health. Since the antimicrobial resistance genes (AMR) from environmental resistome have the potential to be transferred to pathogens, it is essential to explore the resistant capabilities of environmental bacteria. In this study, the reconstruction of in silico resistome was performed for all nine available gemmata genomes. Furthermore, the genome of the newly isolated yet-undescribed strain G18 was sequenced and added to all analyses steps. Selected genomes were screened for the presence of mobile genetic elements. The flanking location of mobilizable genomic milieu around the AMR genes was of particular interest since such colocalization may appear to promote the horizontal gene transfer (HGT) events. Moreover the antibiotic susceptibility profile of six phylogenetically distinct strains of Gemmataceae planctomycetes was determined.


Sign in / Sign up

Export Citation Format

Share Document