Long Noncoding RNA HUPCOS Promotes Follicular Fluid Androgen Excess in PCOS Patients via Aromatase Inhibition

2020 ◽  
Vol 105 (4) ◽  
pp. 1086-1097 ◽  
Author(s):  
Qi Che ◽  
Miao Liu ◽  
Doudou Zhang ◽  
Yongning Lu ◽  
Jun Xu ◽  
...  

Abstract Context Androgen excess is a key feature of polycystic ovary syndrome (PCOS), but the underlying molecular mechanism remains unclear. Objective To determine the role and mechanism of novel long noncoding RNA (lncRNA) highly up-regulated in PCOS (HUPCOS) in the androgen excess of PCOS patients. Design The lncRNA expression profile in granulosa cells derived from PCOS and non-PCOS women were analyzed by using microarray assay. Human granulosa cell line KGN was used for mechanism investigation. Setting This was a university-based study. Patients Thirty-eight PCOS and 38 control patients were recruited: 8 PCOS and 8 control samples used for microarray discovery, the remaining 30 PCOS cases and 30 controls for quantitative RT-PCR validation. Main Outcome Measures The aberrant expression lncRNA profile of PCOS patients was measured using microarray. The relationship of HUPCOS and follicular fluid testosterone was measured. Aromatase expression were analyzed after HUPCOS downregulation. HUPCOS interaction protein was confirmed by RNA pull-down. Results The significantly elevated lncRNA in PCOS granulosa cells was named HUPCOS, which was positively correlated with follicular fluid testosterone of PCOS patients. HUPCOS downregulation increased aromatase expression and promoted conversion of androgen to estrogen. RNA-binding protein with multiple splicing (RBPMS) was the most likely protein that combined with HUPCOS. Conclusions Our findings suggested that HUPCOS mediated androgen excess in follicular fluid of PCOS patients by suppressing aromatase expression via interaction with RBPMS.

2021 ◽  
Author(s):  
Kaixuan Sun ◽  
Yinling Xiu ◽  
Jianbo Song ◽  
Yuexin Yu

Abstract ObjectiveThis study aims to investigate the expression of long noncoding RNA CTBP1-AS in patients with polycystic ovarian syndrome (PCOS) and its effects on the proliferation and autophagy of ovarian granulosa cells. MethodsReal-time polymerase chain reaction assay was used to analyze the expression levels of CTBP1-AS in peripheral blood leukocytes of 40 PCOS patients and 40 non-PCOS women and the CTBP1-AS expression in ovarian granulosa cells and transfect ovarian granulosa cells with pcDNA3.1-CTBP1-AS and si-CTBP1-AS, respectively. Consequently, the CCK-8 kit was used to analyze the effect of CTBP1-AS on the proliferation of ovarian granulosa cells. Moreover, Western blotting was used to detect the expression levels of autophagy-related proteins LC3II/I and P62. ResultThe CTBP1-AS expression in the peripheral blood of PCOS patients was higher compared with non-PCOS patients (P < 0.05). Furthermore, the CTBP1-AS expression of ovarian granulosa cells in PCOS patients was higher compared with non-PCOS patients (P < 0.05). Consequently, CTBP1-AS overexpression in ovarian granulosa cells promotes the proliferation of ovarian granulosa cells and autophagy levels (P < 0.05). The CTBP1-AS expression interference in ovarian granulosa cells can inhibit the proliferation of ovarian granulosa cells and autophagy levels (P < 0.05). ConclusionThe CTBP1-AS expression in peripheral blood and ovarian granulosa cells of PCOS patients significantly increased, and CTBP1-AS could promote the proliferation of ovarian granulosa cells and the level of autophagy.


2020 ◽  
Vol 9 (6) ◽  
pp. 479-488 ◽  
Author(s):  
Teresa Vilariño-García ◽  
Antonio Pérez-Pérez ◽  
Esther Santamaría-López ◽  
Nicolás Prados ◽  
Manuel Fernández-Sánchez ◽  
...  

Introduction Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, obesity, and insulin resistance, that leads to subfertility. Sam68 is an RNA-binding protein with signaling functions that is ubiquitously expressed, including gonads. Sam68 is recruited to leptin signaling, mediating different leptin actions. Objective We aimed to investigate the role of Sam68 in leptin signaling, mediating the effect on aromatase expression in granulosa cells and the posible implication of Sam68 in the leptin resistance in PCOS. Materials and methods Granulosa cells were from healthy donors (n = 25) and women with PCOS (n = 25), within the age range of 20 to 40 years, from Valencian Infertility Institute (IVI), Seville, Spain. Sam68 expression was inhibited by siRNA method and overexpressed by expression vector. Expression level was analysed by qPCR and immunoblot. Statistical significance was assessed by ANOVA followed by different post-hoc tests. A P value of <0.05 was considered statistically significant. Results We have found that leptin stimulation increases phosphorylation and expression level of Sam68 and aromatase in granulosa cells from normal donors. Downregulation of Sam68 expression resulted in a lower activation of MAPK and PI3K pathways in response to leptin, whereas overexpression of Sam68 increased leptin stimulation of signaling, enhancing aromatase expression. Granulosa cells from women with PCOS presented lower expression of Sam68 and were resistant to the leptin effect on aromatase expression. Conclusions These results suggest the participation of Sam68 in leptin receptor signaling, mediating the leptin effect on aromatase expression in granulosa cells, and point to a new target in leptin resistance in PCOS.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 251.1-251
Author(s):  
J. M. Kim ◽  
H. J. Kang ◽  
S. J. Jung ◽  
B. W. Song ◽  
H. J. Jeong ◽  
...  

Background:Long noncoding RNAs (lncRNAs) have recently emerged as important biological regulators and the aberrant expression of lncRNAs has been reported in various diseases including cancer, cardiovascular disease, and diabetes mellitus. However, the role of lncRNAs in the pathogenesis of rheumatoid arthritis (RA) remains unknown.Objectives:Thus, we studied lncRNAs influenced by IL-1, which is one of the key mediators in the pathogenesis of RA, and also investigated whether regulation of NF-κB activation, which is known to be induced by IL-1, could lead to the changes of expression of those lncRNAs.Methods:Fibroblast-like synoviocytes (FLS) were obtained from the knee joints of the patients with RA. The next-generation sequencing (NGS) data were analyzed to identify differentially expressed lncRNAs between unstimulated RA FLS and IL-1-stimulated RA FLS. The expression levels of the top 5 candidates in NGS data were validated by RT-qPCR using extended number of unstimulated RA FLS and IL-1-stimulated RA FLS. IMD-0560, an inhibitor of IκB kinase (IKK) was used for the regulation of NF-κB activation. Activation and inhibition of NF-κB were confirmed by Western blotting. Changed expressions of the lncRNAs were identified by RT-qPCR.Results:NGS analysis revealed up-regulated 30 lncRNAs and down-regulated 15 lncRNAs in IL-1-treated RA FLS compared with unstimulated RA FLS. Top 5 lncRNAs were selected among 30 lncRNAs up-regulated by IL-1 in RA FLS based on fold-change with P-value cutoff. The up-regulated lncRNAs including NR_046035, NR_027783, NR_033422, NR_003133, and NR_049759 were validated by RT-qPCR. IMD-0560 inhibited phosphorylation of IκBα induced by IL-1 in RA FLS. Overexpression of lncRNAs induced by IL-1 was also inhibited by IMD-0560 in RA FLS.Conclusion:Our study revealed that IL-1 increased the expression of NR_046035, NR_027783, NR_033422, NR_003133, and NR_049759 in RA FLS. In addition, the expression of these lncRNAs was regulated by inhibition of NF-κB activation. Thus, our data suggest that the lncRNAs might be involved in the pathogenesis of RA through NF-κB signaling pathway.References:[1]Long noncoding RNAs and human disease. Trends Cell Biol. 2011 Jun;21(6):354-61.[2]A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013 Aug 16;341(6147):789-92.[3]Long noncoding RNA expression profile in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Res Ther. 2016 Oct 6;18(1):227.Disclosure of Interests:None declared


2020 ◽  
Author(s):  
Xiangrong Cui ◽  
Xuan Jing ◽  
Junfen Liu ◽  
Meiqin Yan ◽  
Xingyu Bi ◽  
...  

Abstract Background: Polycystic ovary syndrome (PCOS) is one of the most common endocrine metabolic disorders characterized by hyperandrogenism, polycystic ovaries and ovulatory dysfunction. Several studies have suggested that the aberrant expression of miRNAs serves an important role in the pathogenesis of PCOS, though the role and underling mechanism of microRNA-132 (miR-132) in the development of PCOS remain unclear. Methods: The expression of miR-132 in granulosa cells (GCs) derived from 26 PCOS patients and 30 healthy controls was detected through RT-qPCR. And the apoptosis levels of granulosa cells were measured by TUNEL.Granulosa-like tumor cell line (KGN) was cultured for cell counting kit-8 (CCK-8) was assays after over-expression of miR-132 or knockdown TargetScan was applied to analysis the potential targets of miR-132, which was further verified by luciferase assay, RT-qPCR and western blot. Results: The expression of miR-132 was declined in granulosa cells of PCOS patients. Meanwhile, the significantly increased apoptotic nuclei were present GCs of PCOS patients. Furthermore, over-expressed of miR-132 inhibited the proliferation of KCN cells. In addition, our results verified that miR-132 directly targeted Foxa1, knockdown of which suppressed KGN cells proliferation. Conclusion: Our results revealed that miR-132 inhibits the cell viability and induces apoptosis by directly interacting with Foxa1, indicating a role of miR-132 to be a potential target in the PCOS patients.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Jessica Rea ◽  
Valentina Menci ◽  
Paolo Tollis ◽  
Tiziana Santini ◽  
Alexandros Armaos ◽  
...  

Abstract Neuronal differentiation is a timely and spatially regulated process, relying on precisely orchestrated gene expression control. The sequential activation/repression of genes driving cell fate specification is achieved by complex regulatory networks, where transcription factors and noncoding RNAs work in a coordinated manner. Herein, we identify the long noncoding RNA HOTAIRM1 (HOXA Transcript Antisense RNA, Myeloid-Specific 1) as a new player in neuronal differentiation. We demonstrate that the neuronal-enriched HOTAIRM1 isoform epigenetically controls the expression of the proneural transcription factor NEUROGENIN 2 that is key to neuronal fate commitment and critical for brain development. We also show that HOTAIRM1 activity impacts on NEUROGENIN 2 downstream regulatory cascade, thus contributing to the achievement of proper neuronal differentiation timing. Finally, we identify the RNA-binding proteins HNRNPK and FUS as regulators of HOTAIRM1 biogenesis and metabolism. Our findings uncover a new regulatory layer underlying NEUROGENIN 2 transitory expression in neuronal differentiation and reveal a previously unidentified function for the neuronal-induced long noncoding RNA HOTAIRM1.


2018 ◽  
Vol 234 (5) ◽  
pp. 7032-7039 ◽  
Author(s):  
Liang Huang ◽  
Hongcheng Lin ◽  
Liang Kang ◽  
Pinzhu Huang ◽  
Jun Huang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Ning Dong

The aim of this study was to explore whether the long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1)/miR-34a/Snail1 and NEAT1/miR-204/Zeb1 pathways are involved in epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs (HLECs) were separated and cultured. Our results identified that TGF-β2 induces NEAT1 overexpression in a dose-dependent manner and a time-dependent manner. Additionally, TGF-β2 induced downregulation of E-cadherin and upregulation of fibronectin in primary HLECs through a NEAT1-dependent mechanism. Microarray analysis showed that NEAT1 overexpression inhibited the miR-34a and miR-204 levels in the LECs. The expression of miR-34a and miR-204 was decreased, and the levels of Snail1 and Zeb1 were elevated in human posterior capsule opacification- (PCO-) attached LECs and the LECs obtained from anterior subcapsular cataract (ASC) by quantitative RT-PCR (qRT-PCR). Mechanistic studies revealed that NEAT1 negatively regulates miR-34a or miR-204, and miR-34a or miR-204 directly targets Snail1 or Zeb1 by luciferase assay and RNA-binding protein immunoprecipitation assay, respectively. Overall, the NEAT1/miR-34a/Snail1 and NEAT1/miR-204/Zeb1 pathways are involved in TGF-β2-induced EMT of HLECs. In summary, TGF-β2 induces NEAT1 overexpression, which in turn suggests that NEAT1 acts as a ceRNA targeting Snail1 or Zeb1 by binding miR-34a or miR-204, and promotes the progression of EMT of LECs.


2021 ◽  
Author(s):  
Yaping Jiang ◽  
Rui Jiang ◽  
Peng Zhang ◽  
qiong Yu ◽  
Hongping Ba ◽  
...  

Abstract Purpose To investigate the changes of human granulosa cell, TNFR1, TNFR2 and their downstream molecules in patients with polycystic ovary syndrome (PCOS) and the control group. Methods We recruited infertile women with polycystic ovary syndrome (n = 30) and compared them with infertility due to fallopian tube obstruction(n = 30, control group). The ovaries were stimulated with GnRH agonists and gonadotropins. Follicular fluid from large follicles ([14 mm]) was pooled and granulosa cells (GCs) were separated by a cellular filter. The TNF-α level of follicular fluid was measured by ELISA. TUNEL assay were used to detect the apoptosis of purified GCs. Real-time PCR and Western blotting were used to detect the expression of TNF-related signaling molecules in GCs. Results The rate of high quality embryos in the PCOS group was lower than that in the control group. There were higher percentages of apoptosis in GCs of PCOS patients than in the control group. TNF-α is upregulated in follicular fluid of PCOS patients. TNFR1 and caspase-3 mRNA level were signifificantly higher in PCOS group than in the control group. TNF-α-mediated apoptosis of PCOS granulosa cells was mainly dependent on TNFR1.The TNF-α/TNFR1 signaling pathway mediates apoptosis rather than survival in cumulus cells of PCOS patients. Conclusions TNF-α expression was upregulated in follicular fluid of PCOS patients, and TNFR1 overexpression in female granulosa cells of PCOS was associated with higher levels of apoptosis in these cells, suggesting that the TNF-α/TNFR1 signaling pathway may be a candidate for higher apoptosis in female granulosa cells of PCOS.


Sign in / Sign up

Export Citation Format

Share Document