scholarly journals Discovery of a Functional Glucocorticoid Receptor β-Isoform in Zebrafish

Endocrinology ◽  
2007 ◽  
Vol 149 (4) ◽  
pp. 1591-1599 ◽  
Author(s):  
Marcel J. M. Schaaf ◽  
Danielle Champagne ◽  
Ivo H. C. van Laanen ◽  
Diane C. W. A. van Wijk ◽  
Annemarie H. Meijer ◽  
...  

In humans, two glucocorticoid receptor (GR) splice variants exist: GRα and GRβ, which are identical between amino acids 1–727 and then diverge. Whereas GRα (the canonical GR) acts as a ligand-activated transcription factor, GRβ does not bind traditional glucocorticoid agonists, lacks GRα’s transactivational activity, and acts as a dominant-negative inhibitor of GRα. It has been suggested that this receptor isoform is involved in the induction of glucocorticoid resistance in asthma patients. Unfortunately, a GR β-isoform has been detected in only humans, and therefore, an animal model for studies on this isoform is lacking. In the present study, we demonstrate that in zebrafish a GR isoform exists that diverges from the canonical zebrafish GR at the same position as human GRβ from human GRα. The zebrafish GR β-isoform acts as a dominant-negative inhibitor in reporter assays, and the extent of inhibition and the effective GRα/GRβ ratio is similar to studies performed with the human GR isoforms. In addition, the subcellular localization of zebrafish GRβ is similar to its human equivalent. Finally, expression levels of GRα and GRβ were determined in adult zebrafish tissues and at several developmental stages. Both receptor isoforms were detected throughout the body, and GRβ mRNA levels were relatively low compared with GRα mRNA levels, as in humans. Thus, for the first time, a GR β-isoform has been identified in a nonhuman animal species, shedding new light on the relevance of this GR splice variant and providing a versatile animal model for studies on the GR system.

2007 ◽  
Vol 38 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Henk Russcher ◽  
Virgil A S H Dalm ◽  
Frank H de Jong ◽  
Albert O Brinkmann ◽  
Leo J Hofland ◽  
...  

The glucocorticoid receptor (GR) is widely expressed in various tissues throughout the human body. At least three different 3′-splice variants of the GR have been reported: GR-α, which is functionally active; GR-β, which is a dominant negative inhibitor of GR-α function; and GR-P, which is thought to activate the function of GR-α. At least seven different variants for exon 1 exist, 1A–1F and 1H, each with its own promoter. In this study, we explored if tissue-specific splicing of the 3′-end variants of the GR is influenced by alternative promoter usage. cDNAs of different tissues and cell lines were used to investigate which part of transcripts carrying each of the three major variants for exons 1, 1A, 1B, or 1C, encodes for the splice variants GR-α, GR-β, and GR-P. Our data demonstrate that the expression of GR-α is preferentially regulated by promoter 1C and that for the expression of GR-P promoter 1B is predominantly used. This indicates that regulation of GR splice variants could partly occur through selective use of the multiple promoters, and that this is another way to sensitize cells and tissues to the different activities of the GR isoforms.


Endocrinology ◽  
2015 ◽  
Vol 156 (5) ◽  
pp. 1757-1769 ◽  
Author(s):  
Antonia Chatzopoulou ◽  
Upasana Roy ◽  
Annemarie H. Meijer ◽  
A. Alia ◽  
Herman P. Spaink ◽  
...  

In humans and zebrafish, 2 glucocorticoid (GC) receptor (GR) splice variants exist: the canonical GR α-isoform (GRα), and the GRβ. In the present study, we have used the zebrafish model system in order to reveal genes affected by each of these 2 receptor isoforms. By injecting zebrafish embryos with different splice-blocking morpholinos, we could knock down both GR isoforms or could target the alternative splicing of the GR pre-mRNA in favor of the GRβ. In addition, specific GRβ overexpression was achieved by injecting mRNA. Embryos were treated with the synthetic GC dexamethasone, and transcriptome analysis was performed. Two distinct gene clusters were found that were regulated by GRα: one that was regulated by GRα under basal conditions (presence of endogenous cortisol only), and one that was regulated upon increased activation of GRα (using a pharmacological dose of dexamathasone). GRβ may act as a dominant-negative inhibitor of GRα when GRβ is overexpressed and the GRα expression level is knocked down simultaneously. However, without GRα knockdown, no evidence for this activity was found. In addition, the data indicate regulation of gene transcription through other mechanisms of action by GRβ. We also investigated the concentrations of several metabolites using nuclear magnetic resonance spectroscopy. We found that dexamethasone treatment and knockdown of GRα together with overexpression of GRβ had opposite effects on glucose, amino acid, and fatty acid levels. Thus, we have shed new light on the molecular mechanisms of GC-induced effects on metabolism, which are known to increase the risk of obesity, hyperglycemia, and diabetes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 995-995
Author(s):  
Marrit Meier ◽  
Monique L. Den Boer ◽  
Jules P.P. Meijerink ◽  
Monique Passier ◽  
Elisabeth R. Van Wering ◽  
...  

Abstract Children with T-lineage Acute Lymphoblastic Leukemia (T-ALL) have a higher relapse-risk and are in-vitro more resistant to therapeutic drugs compared to ALL patients with a precursor-B phenotype. Cellular resistance to anti-cancer agents has previously shown to be associated with failure of P53 family member signaling by abrogation of P53 function due to loss-of-function mutations or dominant-negative inhibition by isoforms of P73 lacking (part of) the N-terminal transactivation domain (P73ΔEX2, P73ΔEX2/3, ΔN-P73 and ΔN’-P73). Since p53 mutations are not commonly found in T-ALL, we investigated the expression levels of p73 splice variants in relation to drug resistance in children with T-ALL. Splice variants were quantitatively measured at the mRNA level in leukemic cells of 55 T-ALL patients and mononuclear cells of 12 non-leukemic controls. TA-p73 (transactivation competent), p73Δex2, p73Δex2/3, ΔN-p73 and ΔN’-p73 were all found to be present at a relatively higher mRNA level in T-ALL patients than controls (P < 0.05 for all), suggesting that expression of the TP73 gene is deregulated in T-ALL. Resistance of T-ALL cells to the DNA damaging drug daunorubicin correlated with mRNA levels of the dominant-negative variants of p73, i.e. ΔN-p73 and ΔN’-p73 (Rs = 0.38, P = 0.03). In contrast, expression of none of the variants, including ΔN-p73 and ΔN’-p73, was related to resistance of T-ALL cells to non-DNA damaging drugs (prednisolone, vincristine and L-asparaginase). In conclusion, high expression of ΔN-p73 and ΔN’-p73 variants possibly contributes to resistance to DNA damaging drugs in childhood T-ALL.


2005 ◽  
Vol 289 (5) ◽  
pp. E857-E863 ◽  
Author(s):  
Anastasia Kariagina ◽  
Svetlana Zonis ◽  
Mahta Afkhami ◽  
Dmitry Romanenko ◽  
Vera Chesnokova

Leukemia inhibitory factor (LIF) is a pleiotropic cytokine belonging to the gp130 family. LIF is induced peripherally and within the brain during inflammatory or chronic autoimmune diseases and is a potent stimulator of the hypothalamic-pituitary-adrenal (HPA) axis. Here we investigated the role of LIF in mediating glucocorticoid receptor (GR) expression in the HPA axis. LIF treatment (3 μg/mouse, ip) markedly decreased GR mRNA levels in murine hypothalamus (5-fold, P < 0.01) and pituitary (1.7-fold, P < 0.01) and downregulated GR protein levels. LIF decreased GR expression in murine corticotroph cell line AtT20 within 2 h, and this effect was sustained for 8 h after treatment. LIF-induced GR mRNA reduction was abrogated in AtT20 cells overexpressing dominant-negative mutants of STAT3, indicating that intact JAK-STAT signaling is required to mediate LIF effects on GR expression. Conversely, mice with LIF deficiency exhibited increased GR mRNA levels in the hypothalamus and pituitary (3.5- and 3.5-fold, respectively; P < 0.01 for both) and increased GR protein expression when compared with wild-type littermates. The suppressive effects of dexamethasone on GR were more pronounced in LIF-null animals. These data suggest that LIF maintains the HPA axis activation by decreasing GR expression and raise the possibility that LIF might contribute to the development of central glucocorticoid resistance during inflammation.


2005 ◽  
Vol 90 (6) ◽  
pp. 3505-3509 ◽  
Author(s):  
Oren Fruchter ◽  
Tomoshige Kino ◽  
Emmanouil Zoumakis ◽  
Salvatore Alesci ◽  
Massimo De Martino ◽  
...  

The β-isoform of human glucocorticoid receptor β (hGRβ) acts as a natural dominant negative inhibitor of hGRα-induced transactivation of glucocorticoid-responsive genes. We determined hGRβ ability to suppress hGRα transactivation that was induced by commonly used synthetic glucocorticoids. HepG2/C3A cells were transiently cotransfected with GR cDNA and a glucocorticoid-responsive promoter, luciferase (MMTV-luc). Transfected cells were incubated for 16 h with glucocorticoid and luciferase. For each compound, a dose-response curve was constructed, and half-maximal effective concentrations and maximal transcriptional activities were compared. hGRβ, at a 1:1 ratio to hGRα, differentially suppressed hGRα-induced maximal transcriptional activity stimulated by triamcinolone, dexamethasone, hydrocortisone, and betamethasone (by 96, 68, 62, and 49%, respectively) but not by methylprednisolone. The suppressive effect of hGRβ on hGRα-induced transactivation was stronger at lower concentrations of all tested glucocorticoids, whereas it was blunted at higher concentrations. We conclude that the potency of the dominant negative effect of hGRβ on hGRα-induced transactivation depends on both the type and the dose of the synthetic glucocorticoids in use. These results may provide helpful information concerning the selection of synthetic glucocorticoids for treatment of pathological conditions in which hGRβ modulates the sensitivity of tissues to glucocorticoids.


2015 ◽  
Vol 36 (5) ◽  
pp. 714-730 ◽  
Author(s):  
Bo He ◽  
Diana Cruz-Topete ◽  
Robert H. Oakley ◽  
Xiao Xiao ◽  
John A. Cidlowski

Whilein vitrostudies have demonstrated that a glucocorticoid receptor (GR) splice isoform, β-isoform of human GR (hGRβ), acts as a dominant-negative inhibitor of the classic hGRα and confers glucocorticoid resistance, thein vivofunction of hGRβ is poorly understood. To this end, we created an adeno-associated virus (AAV) to express hGRβ in the mouse liver under the control of the hepatocyte-specific promoter. Genome-wide expression analysis of mouse livers showed that hGRβ significantly increased the expression of numerous genes, many of which are involved in endocrine system disorders and the inflammatory response. Physiologically, hGRβ antagonized GRα's function and attenuated hepatic gluconeogenesis through downregulation of phosphoenolpyruvate carboxykinase (PEPCK) in wild-type (WT) mouse liver. Interestingly, however, hGRβ did not repress PEPCK in GR liver knockout (GRLKO) mice. In contrast, hGRβ regulates the expression of STAT1 in the livers of both WT and GRLKO mice. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated that hGRβ binds to the intergenic glucocorticoid response element (GRE) of the STAT1 gene. Furthermore, treatment with RU486 inhibited the upregulation of STAT1 mediated by hGRβ. Finally, our array data demonstrate that hGRβ regulates unique components of liver gene expressionin vivoby both GRα-dependent and GRα-independent mechanisms.


2018 ◽  
Vol 38 (8) ◽  
pp. e00453-17 ◽  
Author(s):  
Jungki Min ◽  
Lalith Perera ◽  
Juno M. Krahn ◽  
Christine M. Jewell ◽  
Andrea F. Moon ◽  
...  

ABSTRACT Glucocorticoid receptor β (GRβ) is associated with glucocorticoid resistance via dominant negative regulation of GRα. To better understand how GRβ functions as a dominant negative inhibitor of GRα at a molecular level, we determined the crystal structure of the ligand binding domain of GRβ complexed with the antagonist RU-486. The structure reveals that GRβ binds RU-486 in the same ligand binding pocket as GRα, and the unique C-terminal amino acids of GRβ are mostly disordered. Binding energy analysis suggests that these C-terminal residues of GRβ do not contribute to RU-486 binding. Intriguingly, the GRβ/RU-486 complex binds corepressor peptide with affinity similar to that of a GRα/RU-486 complex, despite the lack of helix 12. Our biophysical and biochemical analyses reveal that in the presence of RU-486, GRβ is found in a conformation that favors corepressor binding, potentially antagonizing GRα function. This study thus presents an unexpected molecular mechanism by which GRβ could repress transcription.


1999 ◽  
Vol 189 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Tomoshige Kino ◽  
Alexander Gragerov ◽  
Jeffrey B. Kopp ◽  
Roland H. Stauber ◽  
George N. Pavlakis ◽  
...  

The HIV-1 virion-associated accessory protein Vpr affects both viral replication and cellular transcription, proliferation, and differentiation. We report that Vpr enhances the activity of glucocorticoids in lymphoid and muscle-derived cell lines by interacting directly with the glucocorticoid receptor and general transcription factors, acting as a coactivator. Vpr contains the signature motif LXXLL also present in cellular nuclear receptor coactivators, such as steroid receptor coactivator 1 and p300/CREB-binding protein, which mediates their interaction with the glucocorticoid and other nuclear hormone receptors. A mutant Vpr molecule with disruption of this coactivator signature motif lost its ability to influence transcription of glucocorticoid-responsive genes and became a dominant-negative inhibitor of Vpr, possibly by retaining its general transcription factor–binding activities. The glucocorticoid coactivator activity of Vpr may contribute to increased tissue glucocorticoid sensitivity in the absence of hypercortisolism and to the pathogenesis of AIDS.


2017 ◽  
Vol 234 (2) ◽  
pp. 89-100 ◽  
Author(s):  
James S M Cuffe ◽  
Zarqa Saif ◽  
Anthony V Perkins ◽  
Karen M Moritz ◽  
Vicki L Clifton

Maternal dexamethasone exposure in the mouse impairs placental development and programs adult disease in a sexually dimorphic manner. Glucocorticoids bind to different glucocorticoid receptor (GR) isoforms to regulate gene transcription and cellular signaling. We hypothesized that sexually dimorphic placental responses to glucocorticoids are due to differences in GR isoforms present in the placenta. Pregnant C57Bl6 mice were exposed to saline or dexamethasone from E12.5 until E14.5 (1 µg/kg/h) before the collection of placentae. Cytoplasmic and nuclear protein fractions were extracted from placentae of male and female fetuses for Western blot analysis of GR isoforms. Eight known isoforms of the GR were detected in the mouse placenta including the translational isoforms GRα-A, B, C and D1–3 and the splice variants GRA and GRP. The expression of GRA, GRP and each of the GRα isoforms were altered by dexamethasone in relation to fetal sex and cellular location. Placentae of female fetuses had higher GRα-A and GRP expression in the cytoplasm than males, and GRα-C was more highly expressed in the nucleus of females than that in males. Dexamethasone significantly increased the cytoplasmic expression of GRα-A, but reduced the expression of GRα-C in placentae of males. Dexamethasone increased the expression of the GRα-C-regulated genes Sgk1 and Bcl2l11, particularly in females. The cleaved caspase-3 staining in placental sections indicated GRα-C may mediate sex differences in dexamethasone-induced apoptosis. These findings may underlie the sex-specific placental adaptations that regulate different growth profiles in males and females and different risks for programmed disease outcomes in offspring.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document