scholarly journals Amino Acid Sensing in Metabolic Homeostasis and Health

2020 ◽  
Author(s):  
Xiaoming Hu ◽  
Feifan Guo

Abstract Sensing and responding to changes in nutrient levels, including those of glucose, lipids, and amino acids, by the body is necessary for survival. Accordingly, perturbations in nutrient sensing are tightly linked with human pathologies, particularly metabolic diseases such as obesity, type 2 diabetes mellitus, and other complications of metabolic syndromes. The conventional view is that amino acids are fundamental elements for protein and peptide synthesis, while recent studies have revealed that amino acids are also important bioactive molecules that play key roles in signaling pathways and metabolic regulation. Different pathways that sense intracellular and extracellular levels of amino acids are integrated and coordinated at the organismal level, and, together, these pathways maintain whole metabolic homeostasis. In this review, we discuss the studies describing how important sensing signals respond to amino acid availability and how these sensing mechanisms modulate metabolic processes, including energy, glucose, and lipid metabolism. We further discuss whether dysregulation of amino acid sensing signals can be targeted to promote metabolic disorders, and discuss how to translate these mechanisms to treat human diseases. This review will help to enhance our overall understanding of the correlation between amino acid sensing and metabolic homeostasis, which have important implications for human health.

2013 ◽  
Vol 27 (8) ◽  
pp. 1188-1197 ◽  
Author(s):  
Eric M. Wauson ◽  
Andrés Lorente-Rodríguez ◽  
Melanie H. Cobb

G protein-coupled receptors (GPCRs) are membrane proteins that recognize molecules in the extracellular milieu and transmit signals inside cells to regulate their behaviors. Ligands for many GPCRs are hormones or neurotransmitters that direct coordinated, stereotyped adaptive responses. Ligands for other GPCRs provide information to cells about the extracellular environment. Such information facilitates context-specific decision making that may be cell autonomous. Among ligands that are important for cellular decisions are amino acids, required for continued protein synthesis, as metabolic starting materials and energy sources. Amino acids are detected by a number of class C GPCRs. One cluster of amino acid-sensing class C GPCRs includes umami and sweet taste receptors, GPRC6A, and the calcium-sensing receptor. We have recently found that the umami taste receptor heterodimer T1R1/T1R3 is a sensor of amino acid availability that regulates the activity of the mammalian target of rapamycin. This review focuses on an array of findings on sensing amino acids and sweet molecules outside of neurons by this cluster of class C GPCRs and some of the physiologic processes regulated by them.


2003 ◽  
Vol 373 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Russell HYDE ◽  
Peter M. TAYLOR ◽  
Harinder S. HUNDAL

Amino acid availability regulates cellular physiology by modulating gene expression and signal transduction pathways. However, although the signalling intermediates between nutrient availability and altered gene expression have become increasingly well documented, how eukaryotic cells sense the presence of either a nutritionally rich or deprived medium is still uncertain. From recent studies it appears that the intracellular amino acid pool size is particularly important in regulating translational effectors, thus, regulated transport of amino acids across the plasma membrane represents a means by which the cellular response to amino acids could be controlled. Furthermore, evidence from studies with transportable amino acid analogues has demonstrated that flux through amino acid transporters may act as an initiator of nutritional signalling. This evidence, coupled with the substrate selectivity and sensitivity to nutrient availability classically associated with amino acid transporters, plus the recent discovery of transporter-associated signalling proteins, demonstrates a potential role for nutrient transporters as initiators of cellular nutrient signalling. Here, we review the evidence supporting the idea that distinct amino acid “receptors” function to detect and transmit certain nutrient stimuli in higher eukaryotes. In particular, we focus on the role that amino acid transporters may play in the sensing of amino acid levels, both directly as initiators of nutrient signalling and indirectly as regulators of external amino acid access to intracellular receptor/signalling mechanisms.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 261 ◽  
Author(s):  
Yasutomi Kamei ◽  
Yukino Hatazawa ◽  
Ran Uchitomi ◽  
Ryoji Yoshimura ◽  
Shinji Miura

Amino acids are components of proteins that also exist free-form in the body; their functions can be divided into (1) nutritional, (2) sensory, and (3) biological regulatory roles. The skeletal muscle, which is the largest organ in the human body, representing ~40% of the total body weight, plays important roles in exercise, energy expenditure, and glucose/amino acid usage—processes that are modulated by various amino acids and their metabolites. In this review, we address the metabolism and function of amino acids in the skeletal muscle. The expression of PGC1α, a transcriptional coactivator, is increased in the skeletal muscle during exercise. PGC1α activates branched-chain amino acid (BCAA) metabolism and is used for energy in the tricarboxylic acid (TCA) cycle. Leucine, a BCAA, and its metabolite, β-hydroxy-β-methylbutyrate (HMB), both activate mammalian target of rapamycin complex 1 (mTORC1) and increase protein synthesis, but the mechanisms of activation appear to be different. The metabolite of valine (another BCAA), β-aminoisobutyric acid (BAIBA), is increased by exercise, is secreted by the skeletal muscle, and acts on other tissues, such as white adipose tissue, to increase energy expenditure. In addition, several amino acid-related molecules reportedly activate skeletal muscle function. Oral 5-aminolevulinic acid (ALA) supplementation can protect against mild hyperglycemia and help prevent type 2 diabetes. β-alanine levels are decreased in the skeletal muscles of aged mice. β-alanine supplementation increased the physical performance and improved the executive function induced by endurance exercise in middle-aged individuals. Further studies focusing on the effects of amino acids and their metabolites on skeletal muscle function will provide data essential for the production of food supplements for older adults, athletes, and individuals with metabolic diseases.


2021 ◽  
Author(s):  
Sarah L Gautrey ◽  
Mirre J P Simons

Dietary restriction (DR) is one of the most potent ways to extend health- and lifespan. Key progress in understanding the mechanisms of DR, and ageing more generally, was made when dietary protein, and more specifically essential amino acids (EAA), were identified as the key dietary component to restrict to obtain DRs health and lifespan benefits. This role of dietary amino acids has strongly influenced work on ageing mechanisms, especially in nutrient sensing, e.g. Tor and insulin(-like) signalling networks. Experimental biology in Drosophila melanogaster has been instrumental in generating and confirming the now dominant hypothesis that EAA availability is central to ageing. Here, we expand on previous work testing the involvement of EAA in DR through large scale (N=6,238) supplementation experiments across four diets and two genotypes in female flies. Surprisingly, we find that EAA are not essential to DRs lifespan benefits. Importantly, we do identify the fecundity benefits of EAA supplementation suggesting the supplemented EAA were bioavailable. Furthermore, we find that the effects of amino acids on lifespan vary by diet and genetic line studied and that at our most restricted diet fecundity is constrained by other nutrients than EAA. We suggest that DR for optimal health is a concert of nutritional effects, orchestrated by genetic, diet and environmental interactions. Our results question the universal importance of amino acid availability in the biology of ageing and DR.


2007 ◽  
Vol 28 (2) ◽  
pp. 551-563 ◽  
Author(s):  
Zhengchang Liu ◽  
Janet Thornton ◽  
Mário Spírek ◽  
Ronald A. Butow

ABSTRACT Cells of the budding yeast Saccharomyces cerevisiae sense extracellular amino acids and activate expression of amino acid permeases through the SPS-sensing pathway, which consists of Ssy1, an amino acid sensor on the plasma membrane, and two downstream factors, Ptr3 and Ssy5. Upon activation of SPS signaling, two transcription factors, Stp1 and Stp2, undergo Ssy5-dependent proteolytic processing that enables their nuclear translocation. Here we show that Ptr3 is a phosphoprotein whose hyperphosphorylation is increased by external amino acids and is dependent on Ssy1 but not on Ssy5. A deletion mutation in GRR1, encoding a component of the SCFGrr1 E3 ubiquitin ligase, blocks amino acid-induced hyperphosphorylation of Ptr3. We found that two casein kinase I (CKI) proteins, Yck1 and Yck2, previously identified as positive regulators of SPS signaling, are required for hyperphosphorylation of Ptr3. Loss- and gain-of-function mutations in PTR3 result in decreased and increased Ptr3 hyperphosporylation, respectively. We found that a defect in PP2A phosphatase activity leads to the hyperphosphorylation of Ptr3 and constitutive activation of SPS signaling. Two-hybrid analysis revealed interactions between the N-terminal signal transduction domain of Ssy1 with Ptr3 and Yck1. Our findings reveal that CKI and PP2A phosphatase play antagonistic roles in SPS sensing by regulating Ptr3 phosphorylation.


1991 ◽  
Vol 58 (4) ◽  
pp. 431-441 ◽  
Author(s):  
Thérèse Desrosiers ◽  
Laurent Savoie

SummaryThe effect of heat treatments, at various water activities (αw), on digestibility and on the availabilities of amino acids of whey protein samples in the presence of lactose was estimated by an in vitro digestion method with continuons dialysis. Four αw (0·3, 0·5, 0·7 and 0·97), three temperatures (75, 100 and 121 °C) and three heating periods (50, 500 and 5000 s) were selected. The initial lysine: lactose molar ratio was 1:1. Amino acid profiles showed that excessive heating of whey (121 °C, 5000 s) destroyed a significant proportion of cystine at all αw, lysine at αw 0·3, 0·5 and 0·7, and arginine at αw 0·5 and 0·7. At αw 0·3, 0·5 and 0·7, protein digestibility decreased (P < 0·05) as the temperature increased from 75 to 121 °C for a heating period of 5000 s, and as the heating time was prolonged from 500 to 5000 s at 121 °C. Excessive heating also decreased (P < 0·05) the availabilities of ail amino acids at αw 0·3, 0·5 and 0·7. The availabilities of lysine, proline, aspartic acid, glutamic acid, threonine, alanine, glycine and serine were particularly affected. Severe heating at αw 0·97 did not seem to favour the Maillard reaction, but the availabilities of cystine, tyrosine and arginine were decreased, probably as a result of structural modifications of the protein upon heating. Heating whey protein concentrates in the presence of lactose not only affected lysine, but also impaired enzymic liberation of other amino acids, according to the severity of heat treatments and αw.


2021 ◽  
Author(s):  
Bharti Koshti ◽  
Ramesh Singh ◽  
Vivekshinh Kshtriya ◽  
Shanka Walia ◽  
Dhiraj Bhatia ◽  
...  

<p>.<br></p><p>The self-assembly of single amino acids is very important topic of research since there are plethora of diseases like phenylketonuria, tyrosinemia, hypertryptophanemia, hyperglycinemia, cystinuria and maple syrup urine disease to name a few which are caused by the accumulation or excess of amino acids. These are in-born errors of metabolisms (IEM’s) which are caused due to the deficiency of enzymes involved in catabolic pathways of these enzymes. Hence, it is very pertinent to understand the fate of these excess amino acids in the body and their self-assembling behaviour at molecular level. From the previous literature reports it may be surmised that the single amino acids like Phenylalanine, Tyrosine, Tryptophan, Cysteine and Methionine assemble to amyloid like structures, and hence have important implications in the pathophysiology of IEM’s like phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria and hypermethioninemia respectively. In this manuscript we report the self-assembly of lysine hydrocholride to fiber like structures in deionized water. It could be observed that lysine assemble to globular structures in fresh condition and then gradually changes to fiber like morphologies by self-association over time after 24 hours. These fibers gradually change to tubular morphologies after 3 day followed by fractal irregular morphologies in 10 and 15 days respectively. Notably, lysine exists as positively charged amino acid at physiological pH and the amine groups in lysine remain protonated. Hence, the self-assembling properties of lysine hydrochloride in deionized water is also pertinent and give insights into the fate of this amino acid in body in case it remains unmetabolized. Further, MTT assays were done to analyse the toxicities of these aggregates and the assay suggest their cytotoxic nature on SHSY5Y neural cell lines. Hence, the aggregation of lysine may be attributed to the pathological symptoms caused in diseases like hyperlysinemia which is associated with the neurological problems like seizures and short-term memory as observed in case of amyloid diseases like Parkinson’s and Alzheimer’s to name a few.</p>


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Hyeon-Ok Jin ◽  
Sung-Eun Hong ◽  
Ji-Young Kim ◽  
Se-Kyeong Jang ◽  
In-Chul Park

AbstractAmino acid availability is sensed by various signaling molecules, including general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1). However, it is unclear how these sensors are associated with cancer cell survival under low amino acid availability. In the present study, we investigated AKT activation in non-small cell lung cancer (NSCLC) cells deprived of each one of 20 amino acids. Among the 20 amino acids, deprivation of glutamine, arginine, methionine, and lysine induced AKT activation. AKT activation was induced by GCN2/ATF4/REDD1 axis-mediated mTORC2 activation under amino acid deprivation. In CRISPR-Cas9-mediated REDD1-knockout cells, AKT activation was not induced by amino acid deprivation, indicating that REDD1 plays a major role in AKT activation under amino acid deprivation. Knockout of REDD1 sensitized cells cultured under glutamine deprivation conditions to radiotherapy. Taken together, GCN2/ATF4/REDD1 axis induced by amino acid deprivation promotes cell survival signal, which might be a potential target for cancer therapy.


Author(s):  
Alan Kelly

Proteins are, in my view, the most impressive molecules in food. They influence the texture, crunch, chew, flow, color, flavor, and nutritional quality of food. Not only that, but they can radically change their properties and how they behave depending on the environment and, critically for food, in response to processes like heating. Even when broken down into smaller components they are important, for example giving cheese many of its critical flavor notes. Indeed, I would argue that perhaps the most fundamental phenomenon we encounter in cooking or processing food is the denaturation of proteins, as will be explained shortly. Beyond food, the value of proteins and their properties is widespread across biology. Many of the most significant molecules in our body and that of any living organism (including plants and animals) are proteins. These include those that make hair and skin what they are, as well as the hemoglobin that transports oxygen around the body in our blood. Proteins are built from amino acids, a family of 20 closely related small molecules, which all have in chemical terms the same two ends (chemically speaking, an amino end and an acidic end, hence the name) but differ in the middle. This bit in the middle varies from amino acid to amino acid, from simple (a hydrogen atom in the case of glycine, the simplest amino acid) to much more complex structures. Amino acids can link up very neatly, as the amino end of one can form a bond (called a peptide bond) with the acid end of another, and so forth, so that chains of amino acids are formed that, when big enough (more than a few dozen amino acids), we call proteins. Our bodies produce thousands of proteins for different functions, and the instructions for which amino acids combine to make which proteins are essentially what the genetic code encrypted in our DNA specifies. We hear a lot about our genes encoding the secrets of life, but what that code spells is basically P-R-O-T-E-I-N. Yes, these are very important molecules!


2003 ◽  
Vol 16 (2) ◽  
pp. 127-141 ◽  
Author(s):  
Paul J. Moughan

AbstractIt is important to be able to characterise foods and feedstuffs according to their available amino acid contents. This involves being able to determine amino acids chemically and the conduct of bioassays to determine amino acid digestibility and availability. The chemical analysis of amino acids is not straightforward and meticulousness is required to achieve consistent results. In particular and for accuracy, the effect of hydrolysis time needs to be accounted for. Some amino acids (for example, lysine) can undergo chemical modification during the processing and storage of foods, which interferes with amino acid analysis. Furthermore, the modified amino acids may also interfere with the determination of digestibility. A new approach to the determination of available lysine using a modifiedin vivodigestibility assay is discussed. Research is required into other amino acids susceptible to structural damage. There is recent compelling scientific evidence that bacterial activity in the small intestine of animals and man leads to the synthesis and uptake of dietary essential amino acids. This has implications for the accuracy of the ileal-based amino acid digestibility assay and further research is required to determine the extent of this synthesis, the source of nitrogenous material used for the synthesis and the degree of synthesis net of amino acid catabolism. Although there may be potential shortcomings in digestibility assays based on the determination of amino acids remaining undigested at the terminal ileum, there is abundant evidence in simple-stomached animals and growing evidence in human subjects that faecal-based amino acid digestibility coefficients are misleading. Hindgut microbial metabolism significantly alters the undigested dietary amino acid profile. The ileal amino acid digestibility bioassay is expected to be more accurate than its faecal-based counterpart, but correction of the ileal amino acid flow for amino acids of endogenous origin is necessary. Approaches to correcting for the endogenous component are discussed.


Sign in / Sign up

Export Citation Format

Share Document