scholarly journals Amino acid deprivation induces AKT activation by inducing GCN2/ATF4/REDD1 axis

2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Hyeon-Ok Jin ◽  
Sung-Eun Hong ◽  
Ji-Young Kim ◽  
Se-Kyeong Jang ◽  
In-Chul Park

AbstractAmino acid availability is sensed by various signaling molecules, including general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1). However, it is unclear how these sensors are associated with cancer cell survival under low amino acid availability. In the present study, we investigated AKT activation in non-small cell lung cancer (NSCLC) cells deprived of each one of 20 amino acids. Among the 20 amino acids, deprivation of glutamine, arginine, methionine, and lysine induced AKT activation. AKT activation was induced by GCN2/ATF4/REDD1 axis-mediated mTORC2 activation under amino acid deprivation. In CRISPR-Cas9-mediated REDD1-knockout cells, AKT activation was not induced by amino acid deprivation, indicating that REDD1 plays a major role in AKT activation under amino acid deprivation. Knockout of REDD1 sensitized cells cultured under glutamine deprivation conditions to radiotherapy. Taken together, GCN2/ATF4/REDD1 axis induced by amino acid deprivation promotes cell survival signal, which might be a potential target for cancer therapy.

1991 ◽  
Vol 58 (4) ◽  
pp. 431-441 ◽  
Author(s):  
Thérèse Desrosiers ◽  
Laurent Savoie

SummaryThe effect of heat treatments, at various water activities (αw), on digestibility and on the availabilities of amino acids of whey protein samples in the presence of lactose was estimated by an in vitro digestion method with continuons dialysis. Four αw (0·3, 0·5, 0·7 and 0·97), three temperatures (75, 100 and 121 °C) and three heating periods (50, 500 and 5000 s) were selected. The initial lysine: lactose molar ratio was 1:1. Amino acid profiles showed that excessive heating of whey (121 °C, 5000 s) destroyed a significant proportion of cystine at all αw, lysine at αw 0·3, 0·5 and 0·7, and arginine at αw 0·5 and 0·7. At αw 0·3, 0·5 and 0·7, protein digestibility decreased (P < 0·05) as the temperature increased from 75 to 121 °C for a heating period of 5000 s, and as the heating time was prolonged from 500 to 5000 s at 121 °C. Excessive heating also decreased (P < 0·05) the availabilities of ail amino acids at αw 0·3, 0·5 and 0·7. The availabilities of lysine, proline, aspartic acid, glutamic acid, threonine, alanine, glycine and serine were particularly affected. Severe heating at αw 0·97 did not seem to favour the Maillard reaction, but the availabilities of cystine, tyrosine and arginine were decreased, probably as a result of structural modifications of the protein upon heating. Heating whey protein concentrates in the presence of lactose not only affected lysine, but also impaired enzymic liberation of other amino acids, according to the severity of heat treatments and αw.


1989 ◽  
Vol 256 (1) ◽  
pp. C18-C27 ◽  
Author(s):  
W. V. Everson ◽  
K. E. Flaim ◽  
D. M. Susco ◽  
S. R. Kimball ◽  
L. S. Jefferson

Conditions were defined for maintaining optimal protein synthetic activity in suspensions of freshly isolated rat hepatocytes. Under these conditions, isolated hepatocytes exhibited rates of protein synthesis and levels of polysomal aggregation equivalent to those observed in vivo and in perfused liver. Deprivation of total amino acids or single, essential amino acids resulted in a rapid decrease in the rate of protein synthesis, which was readily reversed by readdition of the deficient amino acid(s). The decrease was accompanied by a disaggregation of polysomes and an inhibition of 43S initiation complex formation, which was indicative of a limitation in the rate of initiation of protein synthesis. Extracts prepared from perfused liver deprived of amino acids were inhibitory to initiation of protein synthesis in reticulocyte lysate. The inhibition in reticulocyte lysate was accompanied by an increase in phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF-2), suggesting activation of an eIF-2 alpha kinase or inhibition of a phosphatase in amino acid-deprived hepatocytes. This suggestion was confirmed by prelabeling hepatocytes with 32Pi before amino acid deprivation. Incorporation of 32Pi into eIF-2 alpha was two- to threefold higher in lysine-deprived cells than in hepatocytes incubated in fully supplemented medium. Overall, the results indicated that an increase in eIF-2 alpha phosphorylation was responsible for the defect in initiation of protein synthesis caused by amino acid deprivation.


2002 ◽  
Vol 22 (15) ◽  
pp. 5575-5584 ◽  
Author(s):  
Tao Peng ◽  
Todd R. Golub ◽  
David M. Sabatini

ABSTRACT RAFT1/FRAP/mTOR is a key regulator of cell growth and division and the mammalian target of rapamycin, an immunosuppressive and anticancer drug. Rapamycin deprivation and nutrient deprivation have similar effects on the activity of S6 kinase 1 (S6K1) and 4E-BP1, two downstream effectors of RAFT1, but the relationship between nutrient- and rapamycin-sensitive pathways is unknown. Using transcriptional profiling, we show that, in human BJAB B-lymphoma cells and murine CTLL-2 T lymphocytes, rapamycin treatment affects the expression of many genes involved in nutrient and protein metabolism. The rapamycin-induced transcriptional profile is distinct from those induced by glucose, glutamine, or leucine deprivation but is most similar to that induced by amino acid deprivation. In particular, rapamycin treatment and amino acid deprivation up-regulate genes involved in nutrient catabolism and energy production and down-regulate genes participating in lipid and nucleotide synthesis and in protein synthesis, turnover, and folding. Surprisingly, however, rapamycin had effects opposite from those of amino acid starvation on the expression of a large group of genes involved in the synthesis, transport, and use of amino acids. Supported by measurements of nutrient use, the data suggest that RAFT1 is an energy and nutrient sensor and that rapamycin mimics a signal generated by the starvation of amino acids but that the signal is unlikely to be the absence of amino acids themselves. These observations underscore the importance of metabolism in controlling lymphocyte proliferation and offer a novel explanation for immunosuppression by rapamycin.


2003 ◽  
Vol 16 (2) ◽  
pp. 127-141 ◽  
Author(s):  
Paul J. Moughan

AbstractIt is important to be able to characterise foods and feedstuffs according to their available amino acid contents. This involves being able to determine amino acids chemically and the conduct of bioassays to determine amino acid digestibility and availability. The chemical analysis of amino acids is not straightforward and meticulousness is required to achieve consistent results. In particular and for accuracy, the effect of hydrolysis time needs to be accounted for. Some amino acids (for example, lysine) can undergo chemical modification during the processing and storage of foods, which interferes with amino acid analysis. Furthermore, the modified amino acids may also interfere with the determination of digestibility. A new approach to the determination of available lysine using a modifiedin vivodigestibility assay is discussed. Research is required into other amino acids susceptible to structural damage. There is recent compelling scientific evidence that bacterial activity in the small intestine of animals and man leads to the synthesis and uptake of dietary essential amino acids. This has implications for the accuracy of the ileal-based amino acid digestibility assay and further research is required to determine the extent of this synthesis, the source of nitrogenous material used for the synthesis and the degree of synthesis net of amino acid catabolism. Although there may be potential shortcomings in digestibility assays based on the determination of amino acids remaining undigested at the terminal ileum, there is abundant evidence in simple-stomached animals and growing evidence in human subjects that faecal-based amino acid digestibility coefficients are misleading. Hindgut microbial metabolism significantly alters the undigested dietary amino acid profile. The ileal amino acid digestibility bioassay is expected to be more accurate than its faecal-based counterpart, but correction of the ileal amino acid flow for amino acids of endogenous origin is necessary. Approaches to correcting for the endogenous component are discussed.


1997 ◽  
Vol 272 (4) ◽  
pp. E592-E599 ◽  
Author(s):  
B. B. Poindexter ◽  
C. A. Karn ◽  
J. A. Ahlrichs ◽  
J. Wang ◽  
C. A. Leitch ◽  
...  

To determine how increased amino acid availability alters rates of whole body proteolysis and the irreversible catabolism of the essential amino acids leucine and phenylalanine throughout the neonatal period, leucine and phenylalanine kinetics were measured under basal conditions and in response to intravenous amino acids in two separate groups of healthy, full-term newborns (at 3 days and 3 wk of age). The endogenous rates of appearance of leucine and phenylalanine (reflecting proteolysis) were suppressed equally in both groups and in a dose-dependent fashion (by approximately 10% with 1.2 g x kg(-1) x day(-1) and by approximately 20% with 2.4 g x kg(-1) x day(-1)) in response to intravenous amino acid delivery. Insulin concentrations remained unchanged from basal values during amino acid administration. The irreversible catabolism of leucine and phenylalanine increased in a stepwise fashion in response to intravenous amino acids; again, no differences were observed between the two groups. This study clearly demonstrates that the capacity to acutely increase rates of leucine oxidation and phenylalanine hydroxylation is fully present early in the neonatal period in normal newborns. Furthermore, these data suggest that amino acid availability is a primary regulator of proteolysis in normal newborns throughout the neonatal period.


1998 ◽  
Vol 331 (2) ◽  
pp. 417-422 ◽  
Author(s):  
David C. RISHIKOF ◽  
Ping-Ping KUANG ◽  
Christine POLIKS ◽  
Ronald H. GOLDSTEIN

The steady-state level of α1(I) collagen mRNA is regulated by amino acid availability in human lung fibroblasts. Depletion of amino acids decreases α1(I) collagen mRNA levels and repletion of amino acids induces rapid re-expression of α1(I) mRNA. In these studies, we examined the requirements for individual amino acids on the regulation of α1(I) collagen mRNA. We found that re-expression of α1(I) collagen mRNA was critically dependent on cystine but not on other amino acids. However, the addition of cystine alone did not result in re-expression of α1(I) collagen mRNA. Following amino acid depletion, the addition of cystine with selective amino acids increased α1(I) collagen mRNA levels. The combination of glutamine and cystine increased α1(I) collagen mRNA levels 6.3-fold. Methionine or a branch-chain amino acid (leucine, isoleucine or valine) also acted in combination with cystine to increase α1(I) collagen mRNA expression, whereas other amino acids were not effective. The prolonged absence of cystine lowered steady-state levels of α1(I) collagen mRNA through a mechanism involving decreases in both the rate of gene transcription as assessed by nuclear run-on experiments and mRNA stability as assessed by half-life determination in the presence of actinomycin D. The effect of cystine was not mediated via alterations in the level of glutathione, the major redox buffer in cells, as determined by the addition of buthionine sulphoximine, an inhibitor of γ-glutamylcysteine synthetase. These data suggest that cystine directly affects the regulation of α1(I) collagen mRNA.


2013 ◽  
Vol 27 (8) ◽  
pp. 1188-1197 ◽  
Author(s):  
Eric M. Wauson ◽  
Andrés Lorente-Rodríguez ◽  
Melanie H. Cobb

G protein-coupled receptors (GPCRs) are membrane proteins that recognize molecules in the extracellular milieu and transmit signals inside cells to regulate their behaviors. Ligands for many GPCRs are hormones or neurotransmitters that direct coordinated, stereotyped adaptive responses. Ligands for other GPCRs provide information to cells about the extracellular environment. Such information facilitates context-specific decision making that may be cell autonomous. Among ligands that are important for cellular decisions are amino acids, required for continued protein synthesis, as metabolic starting materials and energy sources. Amino acids are detected by a number of class C GPCRs. One cluster of amino acid-sensing class C GPCRs includes umami and sweet taste receptors, GPRC6A, and the calcium-sensing receptor. We have recently found that the umami taste receptor heterodimer T1R1/T1R3 is a sensor of amino acid availability that regulates the activity of the mammalian target of rapamycin. This review focuses on an array of findings on sensing amino acids and sweet molecules outside of neurons by this cluster of class C GPCRs and some of the physiologic processes regulated by them.


1976 ◽  
Vol 154 (2) ◽  
pp. 541-552
Author(s):  
J E. M. Midgley

The synthesis of ribosomes was compared in rel+ and rel- strains of Escherichia coli undergoing “stepdown” in growth from glucose medium to one with lactate as principal carbon source. Two strains (CP78 and CP79), isogenic except for rel, showed similar behaviour with respect to (1) the kinetics of labelling total RNA and ribosomes with exogenous uracil, (2) the proportion of newly formed protein that could be bound with nascent rRNA in mature ribosomes, and (3) the rate of induction of enzymically active β-galactosidase (relative to the rate of ribosome synthesis). It was concluded that, as there was no net accumulation of RNA during stepdown in either strain, rRNA turnover must be occurring at a high rate. The general features of ribosome maturation in rel+ and rel- cells were almost identical with those found in auxotrophic rel+ organisms starved of required amino acids. In both cases, there was a considerable delay in the maturation of new ribosomal particles, owing to a relative shortfall in the rate of synthesis of ribosome-associated proteins. Only about 4-5% of the total protein labelled during stepdown was capable of binding with newly formed rRNA. This compared with 3.5% for rel+ and 0.5% for rel- auxotrophs during amino acid starvation. The turnover rate for newly formed mRNA and rRNA was virtually the same in “stepped-down” rel+ and rel- strains and was similar to that of the same fraction in amino acid-starved rel+ cells. The functional lifetime of mRNA was also identical. It seems that in the rel- strain many of the characteristics typical of the isogenic rel+ strain are displayed under these conditions, at least as regards the speed of ribosome maturation and the induction of β-galactosidase. Studies on the thermolability of the latter enzyme induced during stepdown indicate that inaccurate translation, which occurs in rel- strains starved for only a few amino acids, is less evident in this situation than in straightforward amino acid deprivation.


1968 ◽  
Vol 48 (1) ◽  
pp. 35-39 ◽  
Author(s):  
E. M. Olsen ◽  
S. J. Slinger

The effect if steam pelleting and regrinding on digestibility of protein in corn, wheat, barley, oats, soybean meal and wheat bran was tested with rats. Percentage amino acid absorption and net protein utilization (NPU) were determined for the wheat bran. Pelleting and regrinding improved the digestibility of protein in bran but had no effect on the digestibility of protein in the other ingredients tested. Increased absorption of amino acids caused by the increased digestibility of protein in bran varied considerably for individual amino acids, being greatest for isoleucine, lysine, methionine and threonine of the essential amino acids. The improvement in protein digestibility and amino acid availability was reflected in a higher NPU.


Sign in / Sign up

Export Citation Format

Share Document