T-Lymphoblast Cell Lines from Laron Dwarfs Augment Basal Colony Formation in Response to Extremely High Concentrations of Growth Hormone*

1990 ◽  
Vol 70 (3) ◽  
pp. 810-813 ◽  
Author(s):  
MITCHELL E. GEFFNER ◽  
NOELLE BERSCH ◽  
WALTERBARBARA M. LIPPE ◽  
DAVID W. GOLDE
1984 ◽  
Vol 105 (3) ◽  
pp. 429-432 ◽  
Author(s):  
Juan Bernal ◽  
Leif C. Andersson

Abstract. The 3,5,3'-triiodothyronine (T3) receptor has been studied in a series of continuously growing human leukaemic cell lines. High concentrations of receptor were found in the erythroblastoid cell line K-562. T3 was bound to the nuclei of these cells with an association constant of 3.4 × 109 m−1, and capacity 104 fmol/100 μg DNA, or 8700 molecules/nucleus. This capacity is comparable to that of rat liver or growth hormone producing cells (GH cells) in culture, and suggests that the K-562 cell line could be a useful model for the study of T3 action on erythroid differentiation.


Endocrinology ◽  
1986 ◽  
Vol 118 (5) ◽  
pp. 1843-1848 ◽  
Author(s):  
ANDERS LINDAHL ◽  
JÖRGEN ISGAARD ◽  
ANDERS NILSSON ◽  
OLLE G. P. ISAKSSON

2003 ◽  
Vol 192 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Eric E Williams ◽  
Laurie J Trout ◽  
Richard M Gallo ◽  
Sarah E Pitfield ◽  
Ianthe Bryant ◽  
...  

1933 ◽  
Vol 17 (1) ◽  
pp. 63-76 ◽  
Author(s):  
James Bonner

1. Sections of Avena coleoptiles are found to show a considerable elongation when suspended in solutions of growth substance. 2. This elongation does not take place in the absence of O2 and is inhibited by KCN and phenylurethane. 3. The rate of respiration of sections of coleoptiles is increased by the addition of growth substance in concentrations which cause growth. High concentrations of growth substance inhibit growth and also respiration. 4. The increase in respiration is inhibited by KCN and phenylurethane in the concentrations which inhibit normal respiration. These concentrations are the same as those which inhibit growth. 5. From 2, 3, and 4, it seems possible that the increase in respiration caused by growth substance may be an essential part of its action in growth.


2021 ◽  
Vol 11 (11) ◽  
pp. 2137-2145
Author(s):  
Xuejuan Zhu ◽  
Danqian Lu

Background: Sulfiredoxin (Srx) has been identified to play important roles in the development of various cancers. However, the precise effects and underlying mechanism of Srx on the progression of HCC are far from being fully understood. Materials and Methods: The abundances of Srx in THLE-2 cell and HCC cell lines were determined by western blot and RT-qPCR. Next, SK-Hep-1 cells were transfected with shRNA-Srx or shRNA-NC and treated with TBHQ (an extracellular signal-regulated kinase (ERK) activator) for functional experiments. Then, CCK8 and colony formation assays were used to determine cell proliferation and clone-forming abilities in vitro. Cell migration and invasion were assessed via wound healing and transwell assays. The expression of MMP2, MMP9 and key members in ERK/nuclear factor E2 related factor (Nrf2) signaling pathway was detected by performing western blot analysis. Results: We reported evidence that Srx was frequently up-regulated in HCC cell lines. Srx interference constrained cell proliferation, colony formation rate, migration and invasion of SK-Hep-1 cells. Moreover, mechanistic investigations indicated that Srx interference significantly inhibited the activation of ERK/Nrf2 signaling pathway, and ERK activator TBHQ can reverse the functions of Srx interference in SK-Hep-1 cells. Conclusion: Overall, Downregulation of Srx might impede HCC progression by suppressing ERK/Nrf2 signaling pathway. Findings in the current study reported the functional involvement and molecular mechanism of Srx in HCC, suggesting that Srx might have a potential therapeutic value in HCC treatment.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi30-vi30
Author(s):  
Katharina Sarnow ◽  
Stephanie Schwab ◽  
Oline Rio ◽  
Joydeep Mukherjee ◽  
Rolf Bjerkvig ◽  
...  

Abstract BACKGROUND The prognosis for glioblastoma multiforme (GBM) patients is poor with a median survival of approximately 15 months. The DNA repair protein O 6-methylguanine-DNA methyltransferase (MGMT) counteracts the effects of temozolomide (TMZ) chemotherapy and is thus associated with poor outcome in GBM patients. Williams Syndrome Transcription Factor (WSTF) has been suggested to regulate the DNA damage response pathway (DDR) in both an indirect (through chromatin remodeling) and direct manner (by phosphorylating H2AX at Tyr142). However, whether WSTF has any role in the development of resistance against chemotherapy through its functions in the DDR in GBMs, is so far unknown. In this study, we investigated whether a loss of WSTF sensitizes different MGMT-proficient and -deficient GBM cell lines to TMZ treatment. METHODS We generated WSTF knockout clones from both MGMT-proficient (LN18, T98G) and -deficient GBM cell lines (U-251) using CRISPR/Cas9 gene-editing technology with lentiviral vectors. The PCR-based screening results combined with the T7 endonuclease mismatch assay for bi-allelic monoclonal knockouts were verified via sequencing and immunoblotting to identify candidate knockout clones. Colony formation assays were performed to determine the survival ability in response to TMZ treatment. Statistical analysis was performed using two-way ANOVA. RESULTS WSTF knockout clones showed a significant decrease in colony formation after TMZ-treatment compared to the corresponding control groups (non-target single guide RNA) (LN18: Clone 59 vs control: p= 0.0456, T98G: All three studied clones vs control: p< 0.0001, U-251: Clone 7/35.1/70.2 vs control: p< 0.0001/p= 0.0107/p= 0.0119). CONCLUSION WSTF is an important factor in both MGMT de- and proficient GBM cell lines for response against TMZ chemotherapy. The loss of WSTF leads to a significantly increased TMZ sensitivity in clinically relevant concentrations for all the studied cell lines. Ongoing studies are investigating the underlying mechanisms and potential alterations in the DDR pathway caused by WSTF loss.


1985 ◽  
Vol 248 (1) ◽  
pp. C80-C87 ◽  
Author(s):  
M. Dunand ◽  
M. L. Aubert ◽  
J. P. Kraehenbuhl ◽  
B. C. Rossier

Established cell lines (TB-6c and TB-M) obtained by continuous culture of epithelial cells from toad Bufo marinus urinary bladder, which, in culture, maintained a high degree of functional differentiation, exhibited a significant number of high-affinity (KA = 1-2 X 10(10) M-1) binding sites detected both with radioiodinated (125I) ovine prolactin (oPRL) and human growth hormone (hGH). Binding capacity was higher in the case of TB-6c cells (7,573 +/- 581 sites/cell) than with the TB-M cells (1,160 +/- 87). Similarly, binding sites for oPRL were characterized on Xenopus laevis kidney-derived cell line A6. With oPRL used both as tracer and standard, significant cross-reaction was observed with hGH, less with human or rat prolactin (PRL), and none with human chorionic somatomammotropin, bovine growth hormone, and rat luteinizing hormone or follicle-stimulating hormones. B. marinus pituitary extracts completely displaced the binding of 125I-oPRL to toad bladder binding sites. This finding of specific sites for PRL on amphibian bladder and kidney cells confirms that PRL exerts specific biological actions for the control of electrolyte and water metabolism in the amphibians.


1987 ◽  
Vol 112 (1) ◽  
pp. 87-96 ◽  
Author(s):  
J. M. M. Harper ◽  
J. B. Soar ◽  
P. J. Buttery

ABSTRACT Methods for the primary culture of muscle cells from fetal sheep were developed which gave high yields of cells. Myoblasts were grown in vitro, and allowed to fuse to form contractile multinucleate myotubes; these could be maintained in a good condition for at least 2 weeks. Protein turnover in these differentiated cultures was examined for sensitivity to each of four potentially anabolic peptide hormones and growth factors: insulin, insulin-like growth factor I (somatomedin C), epidermal growth factor and growth hormone. Insulin was found to have no effect except at high concentrations (1 μmol/l), compatible with its role as a somatomedin analogue. Insulin-like growth factor I was active at lower levels (1 nmol/l) but the cultures were not as responsive to it as were primary rat muscle cultures or differentiated L6 cells, which were tested in similar experiments. The maximum stimulation of protein synthesis observed with the ruminant system was only 16%. Epidermal growth factor was highly anabolic for primary cultures from sheep muscle, and the cells were very sensitive to it, half-maximal stimulation of protein synthesis being seen with concentrations as low as 20 pmol/l. No effects of bovine growth hormone were seen in the ovine system. However, an inhibition of protein breakdown was found with high concentrations (0·1 μmol/l) in the L6 rat myoblast cell line. It was found that the culture conditions used could affect the observed responses of protein synthesis and degradation, despite withdrawal of serum from the incubation media 22 h before testing. J. Endocr. (1987) 112, 87–96


Sign in / Sign up

Export Citation Format

Share Document