scholarly journals SUN-241 Adult Exposure to Iodoacetic Acid Leads to Abnormal Expression of Key Genes Related to Hypothalamic and Pituitary Control of Reproductive Function

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Rachel Gonzalez ◽  
Karen E Weis ◽  
Andressa V Gonsioroski ◽  
Jodi A Flaws ◽  
Lori T Raetzman

Abstract Water disinfection byproducts (DBPs) are formed when chemicals used to decontaminate water come into contact with natural or synthetic organic material. DBPs have been linked to a range of health concerns including reproductive disfunction. One such DBP, the monohalogenated iodoacetic acid (IAA), is formed when iodide reacts with a disinfectant, for example, chlorine. IAA is of particular health concern; not only is iodide widely present in the water supply, especially in coastal communities and those near fracking sites, but IAA has been found to be one of the most cyto- and genotoxic DBPs. Further, a previous study has indicated that in vitro IAA exposure significantly inhibits antral follicle growth and reduces estradiol levels in ovaries. However, little is known about how IAA affects the other major components of the reproductive axis: the hypothalamus and pituitary. The reproductive axis relies on homeostatic release of hormones to communicate from one organ to another and alterations at any level may impact reproduction. So, we set out to test the hypothesis that exposure to IAA would lead to disrupted expression of key hypothalamic and pituitary genes related to reproductive function. We continually exposed female adult CD1 mice to 0.5, 10, 100, or 500 mg/L IAA in their drinking water for approximately 35 days (postnatal day 40 (P40) to their first day in diestrus following P75.) Whole pituitaries and hypothalamic punches containing the arcuate nucleus (ARC), anteroventral periventricular zone (AVPV), and medial preoptic nucleus (mPOA) were collected and processed for qPCR analysis. We find that while kisspeptin (Kiss1) expression in the AVPV - the population responsible for generating the LH surge - is unchanged, 0.5 mg/L IAA exposure significantly increases Kiss1 in the ARC, which controls pulsatile GnRH release, and there is a trending increase (p=.056) at 10mg/L. We also measured ARC expression of Neurokinin B (NKB; Tac2), a neuropeptide secreted by kisspeptin co-expressing neurons to autosynaptically stimulate Kiss1 release. We found no change in mRNA levels of Tac2. We also saw no significant changes in GnRH (Gnrh1) mRNA expression. At the level of the pituitary, there is no change in Lhb mRNA levels. Exposure to 10 mg/L IAA leads to significantly reduced Fshb expression, however FSH serum levels are not significantly changed. These data, taken together with previous findings in the ovary, indicate that IAA has the potential to disrupt each major level of the reproductive axis: ovarian follicle development and steroid synthesis, hypothalamic arcuate Kiss1 synthesis, and Fshb synthesis from the pituitary. Further research is necessary to elucidate at which levels IAA acts directly and at which it acts through action on another component of the axis. Additionally, future studies can clarify the mechanism through which IAA has these effects.

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A487-A487
Author(s):  
Rachel V L Gonzalez ◽  
Karen E Weis ◽  
Andressa V Gonsioroski ◽  
Jodi A Flaws ◽  
Lori T Raetzman

Abstract Iodoacetic acid (IAA) – a water disinfection byproduct (DBP) formed from the reaction between an oxidizing disinfectant, i.e. chlorine, and iodide – is an understudied, yet potentially dangerous environmental toxicant. DBPs have been epidemiologically associated with reproductive dysfunction. In vitro studies have indicated that IAA is one of the most cyto- and genotoxic DBPs. Further, murine ovarian research has shown that IAA exposure significantly inhibits antral follicle growth and reduces estradiol levels. Despite this evidence, little is known about the other components of the reproductive axis: the hypothalamus and pituitary. To address this, we tested the hypothesis that IAA exposure would lead to disrupted expression of key hypothalamic and pituitary genes related to reproductive function. We exposed adult female CD1 mice to 0.5, 10, 100, or 500 mg/L IAA in their drinking water from postnatal day 40 (P40) to their first day in diestrus after P75. From this experiment, we collected whole pituitaries and hypothalamic punches containing the arcuate nucleus (ARC), anteroventral periventricular zone (AVPV), and medial preoptic nucleus (mPOA), and processed them for mRNA analysis. We also exposed pituitary explant cultures to IAA to observe direct effects on gene expression. In vivo, we found that mRNA levels of kisspeptin (Kiss1) are significantly increased in the ARC, the region that controls pulsatile GnRH release, at 0.5 and 10 mg/L IAA concentrations. Kiss1 is unchanged in the AVPV, the neuron population responsible for generating the LH surge. We also measured ARC expression of neurokinin B (Tac2) and dynorphin (Pdyn), neuropeptides secreted by kisspeptin co-expressing neurons to autosynaptically stimulate Kiss1 release. We saw no difference in either. GnRH (Gnrh1) expression was also unchanged. Both in vivo at 10 mg/L IAA and in culture, we found IAA exposure significantly reduced Fshb mRNA. Preliminary immunohistochemistry (IHC) data suggests it also leads to an apparent reduction in FSH-positive cells in vitro (N=2). Lhb and the α-subunit (Cga) were unaltered in vivo, though were significantly reduced with in vitro exposure. In neither context was mRNA expression of the GnRH receptor (Gnrhr) changed. Noting apparent direct effects of IAA on the pituitary, we assessed expression of the cell-cycle inhibitor p21 (Cdkn1a), which has been shown to increase with toxicant exposure. We found Cdkn1a increased in vivo at 500 mg/L IAA, trending at 100 mg/L (p=.070), and in vitro. IHC data in vitro suggests a marked increase in P21-positivity following IAA exposure. These data, together with prior ovarian findings, implicate IAA as a potential reproductive axis disruptor at each major level – through ARC Kiss1 expression, Fshb expression in vivo and in vitro, FSH expression in vitro, and Lhb and Cga in vitro. Further, Cdkn1a/P21 induction indicates IAA toxicity at the level of the pituitary.


Author(s):  
Rachel V L Gonzalez ◽  
Karen E Weis ◽  
Andressa V Gonsioroski ◽  
Jodi A Flaws ◽  
Lori T Raetzman

Abstract Iodoacetic acid (IAA) is a water disinfection byproduct (DBP) formed by reactions between oxidizing disinfectants and iodide. In vitro studies have indicated that IAA is one of the most cyto- and genotoxic DBPs. In humans, DBPs have been epidemiologically associated with reproductive dysfunction. In mouse ovarian culture, IAA exposure significantly inhibits antral follicle growth and reduces estradiol production. Despite this evidence, little is known about the effects of IAA on the other components of the reproductive axis: the hypothalamus and pituitary. We tested the hypothesis that IAA disrupts expression of key neuroendocrine factors and directly induces cell damage in the mouse pituitary. We exposed adult female mice to IAA in drinking water in vivo and found 0.5 and 10 mg/L IAA concentrations lead to significantly increased mRNA levels of kisspeptin (Kiss1) in the arcuate nucleus, while not affecting Kiss1 in the anteroventral periventricular nucleus. Both 10 mg/L IAA exposure in vivo and 20 μM IAA in vitro reduced follicle stimulating hormone (FSHβ)-positive cell number and Fshb mRNA expression. IAA did not alter luteinizing hormone (LHβ) expression in vivo, though exposure to 20 μM IAA decreased expression of Lhb and glycoprotein hormones, alpha subunit (Cga) mRNA in vitro. IAA also had toxic effects in the pituitary, inducing DNA damage and P21/Cdkn1a expression in vitro (20 μM IAA) and DNA damage and Cdkn1a expression in vivo (500 mg/L). These data, implicate IAA as a hypothalamic-pituitary-gonadal axis toxicant and suggest the pituitary is directly affected by IAA exposure.


2017 ◽  
Vol 114 (38) ◽  
pp. 10131-10136 ◽  
Author(s):  
Yahav Yosefzon ◽  
Cfir David ◽  
Anna Tsukerman ◽  
Lilach Pnueli ◽  
Sen Qiao ◽  
...  

The TET enzymes catalyze conversion of 5-methyl cytosine (5mC) to 5-hydroxymethyl cytosine (5hmC) and play important roles during development. TET1 has been particularly well-studied in pluripotent stem cells, butTet1-KO mice are viable, and the most marked defect is abnormal ovarian follicle development, resulting in impaired fertility. We hypothesized that TET1 might play a role in the central control of reproduction by regulating expression of the gonadotropin hormones, which are responsible for follicle development and maturation and ovarian function. We find that all three TET enzymes are expressed in gonadotrope-precursor cells, butTet1mRNA levels decrease markedly with completion of cell differentiation, corresponding with an increase in expression of the luteinizing hormone gene,Lhb. We demonstrate that poorly differentiated gonadotropes express a TET1 isoform lacking the N-terminal CXXC-domain, which repressesLhbgene expression directly and does not catalyze 5hmC at the gene promoter. We show that this isoform is also expressed in other differentiated tissues, and that it is regulated by an alternative promoter whose activity is repressed by the liganded estrogen and androgen receptors, and by the hypothalamic gonadotropin-releasing hormone through activation of PKA. Its expression is also regulated by DNA methylation, including at an upstream enhancer that is protected by TET2, to allowTet1expression. The down-regulation of TET1 relieves its repression of the methylatedLhbgene promoter, which is then hydroxymethylated and activated by TET2 for full reproductive competence.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Kiren Mustafa ◽  
Hassan Mohamed ◽  
Aabid Manzoor Shah ◽  
Shaoxuan Yu ◽  
Muhammad Akhlaq ◽  
...  

Human liver cancer has emerged as a serious health concern in the world, associated with poorly available therapies. The Berberis genus contains vital medicinal plants with miraculous healing properties and a wide range of bioactivities. In this study, different crude extracts of B. lycium Royle were prepared and screened against Human Hepatocarcinoma (HepG2) cell lines. The water/ethanolic extract of B. lycium Royle (BLE) exhibited significant antiproliferative activity against the HepG2 cancer cell line with an IC50 value of 47 μg/mL. The extract decreased the clonogenic potential of HepG2 cells in a dose-dependent manner. It induced apoptotic cell death in HepG2 cells that were confirmed by cytometric analysis and microscopic examination of cellular morphology through DAPI-stained cells. Biochemical evidence of apoptosis came from elevating the intracellular ROS level that was accompanied by the loss of mitochondrial membrane potential. The mechanism of apoptosis was further confirmed by gene expression analysis using RT-qPCR that revealed the decline in Bcl-2 independent of p53 mRNA and a rise in CDK1 while downregulating CDK5, CDK9, and CDK10 mRNA levels at 48 h of BLE treatment. The most active fraction was subjected to HPLC which indicated the presence of berberine (48 μg/mL) and benzoic acid (15.8 μg/mL) as major compounds in BLE and a trace amount of luteolin, rutin, and gallic acid. Our study highlighted the importance of the most active BLE extract as an excellent source of nutraceuticals against Human Hepatocarcinoma that can serve as an herbal natural cure against liver cancer.


Author(s):  
Baydaa Hussein ◽  
Zainab A. Aldhaher ◽  
Shahrazad Najem Abdu-Allah ◽  
Adel Hamdan

Background: Biofilm is a bacterial way of life prevalent in the world of microbes; in addition to that it is a source of alarm in the field of health concern. Pseudomonas aeruginosa is a pathogenic bacterium responsible for all opportunistic infections such as chronic and severe. Aim of this study: This paper aims to provide an overview of the promotion of isolates to produce a biofilm in vitro under special circumstances, to expose certain antibiotics to produce phenotypic evaluation of biofilm bacteria. Methods and Materials: Three diverse ways were used to inhibited biofilm formation of P.aeruginosa by effect of phenolic compounds extracts from strawberries. Isolates produced biofilm on agar MacConkey under certain circumstances. Results: The results showed that all isolates were resistant to antibiotics except sensitive to azithromycin (AZM, 15μg), and in this study was conducted on three ways to detect the biofilm produced, has been detected by the biofilm like Tissue culture plate (TCP), Tube method (TM), Congo Red Agar (CRA). These methods gave a clear result of these isolates under study. Active compounds were analyzed in both extracts by Gas Chromatography-mass Spectrometry which indicate High molecular weight compound with a long hydrocarbon chain. Conclusion: Phenolic compounds could behave as bioactive material and can be useful to be used in pharmaceutical synthesis. Phenolic contents which found in leaves and fruits extracts of strawberries shows antibacterial activity against all strains tested by the ability to reduce the production of biofilm formation rate.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Nusa Idaman Said

Water disinfection means the removal, deactivation or killing of pathogenic microorganisms. Microorganisms are destroyed or deactivated, resulting in termination of growth and reproduction. When microorganisms are not removed from drinking water, drinking water usage will cause people to fall ill. Chemical inactivation of microbiological contamination in natural or untreated water is usually one of the final steps to reduce pathogenic microorganisms in drinking water. Combinations of water purification steps (oxidation, coagulation, settling, disinfection, and filtration) cause (drinking) water to be safe after production. As an extra measure many countries apply a second disinfection step at the end of the water purification process, in order to protect the water from microbiological contamination in the water distribution system. Usually one uses a different kind of disinfectant from the one earlier in the process, during this disinfection process. The secondary disinfection makes sure that bacteria will not multiply in the water during distribution. This paper describes several technique of disinfection process for drinking water treatment. Disinfection can be attained by means of physical or chemical disinfectants. The agents also remove organic contaminants from water, which serve as nutrients or shelters for microorganisms. Disinfectants should not only kill microorganisms. Disinfectants must also have a residual effect, which means that they remain active in the water after disinfection. For chemical disinfection of water the following disinfectants can be used such as Chlorine (Cl2),  Hypo chlorite (OCl-), Chloramines, Chlorine dioxide (ClO2), Ozone (O3), Hydrogen peroxide etch. For physical disinfection of water the following disinfectants can be used is Ultraviolet light (UV). Every technique has its specific advantages and and disadvantages its own application area sucs as environmentally friendly, disinfection byproducts, effectivity, investment, operational costs etc. Kata Kunci : Disinfeksi, bakteria, virus, air minum, khlor, hip khlorit, khloramine, khlor dioksida, ozon, UV.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Sign in / Sign up

Export Citation Format

Share Document