scholarly journals Exposure to Iodoacetic Acid, a Water Disinfection Byproduct, Leads to Abnormal Expression of Key Reproductive Axis Genes in the Hypothalamus and Pituitary

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A487-A487
Author(s):  
Rachel V L Gonzalez ◽  
Karen E Weis ◽  
Andressa V Gonsioroski ◽  
Jodi A Flaws ◽  
Lori T Raetzman

Abstract Iodoacetic acid (IAA) – a water disinfection byproduct (DBP) formed from the reaction between an oxidizing disinfectant, i.e. chlorine, and iodide – is an understudied, yet potentially dangerous environmental toxicant. DBPs have been epidemiologically associated with reproductive dysfunction. In vitro studies have indicated that IAA is one of the most cyto- and genotoxic DBPs. Further, murine ovarian research has shown that IAA exposure significantly inhibits antral follicle growth and reduces estradiol levels. Despite this evidence, little is known about the other components of the reproductive axis: the hypothalamus and pituitary. To address this, we tested the hypothesis that IAA exposure would lead to disrupted expression of key hypothalamic and pituitary genes related to reproductive function. We exposed adult female CD1 mice to 0.5, 10, 100, or 500 mg/L IAA in their drinking water from postnatal day 40 (P40) to their first day in diestrus after P75. From this experiment, we collected whole pituitaries and hypothalamic punches containing the arcuate nucleus (ARC), anteroventral periventricular zone (AVPV), and medial preoptic nucleus (mPOA), and processed them for mRNA analysis. We also exposed pituitary explant cultures to IAA to observe direct effects on gene expression. In vivo, we found that mRNA levels of kisspeptin (Kiss1) are significantly increased in the ARC, the region that controls pulsatile GnRH release, at 0.5 and 10 mg/L IAA concentrations. Kiss1 is unchanged in the AVPV, the neuron population responsible for generating the LH surge. We also measured ARC expression of neurokinin B (Tac2) and dynorphin (Pdyn), neuropeptides secreted by kisspeptin co-expressing neurons to autosynaptically stimulate Kiss1 release. We saw no difference in either. GnRH (Gnrh1) expression was also unchanged. Both in vivo at 10 mg/L IAA and in culture, we found IAA exposure significantly reduced Fshb mRNA. Preliminary immunohistochemistry (IHC) data suggests it also leads to an apparent reduction in FSH-positive cells in vitro (N=2). Lhb and the α-subunit (Cga) were unaltered in vivo, though were significantly reduced with in vitro exposure. In neither context was mRNA expression of the GnRH receptor (Gnrhr) changed. Noting apparent direct effects of IAA on the pituitary, we assessed expression of the cell-cycle inhibitor p21 (Cdkn1a), which has been shown to increase with toxicant exposure. We found Cdkn1a increased in vivo at 500 mg/L IAA, trending at 100 mg/L (p=.070), and in vitro. IHC data in vitro suggests a marked increase in P21-positivity following IAA exposure. These data, together with prior ovarian findings, implicate IAA as a potential reproductive axis disruptor at each major level – through ARC Kiss1 expression, Fshb expression in vivo and in vitro, FSH expression in vitro, and Lhb and Cga in vitro. Further, Cdkn1a/P21 induction indicates IAA toxicity at the level of the pituitary.

Author(s):  
Rachel V L Gonzalez ◽  
Karen E Weis ◽  
Andressa V Gonsioroski ◽  
Jodi A Flaws ◽  
Lori T Raetzman

Abstract Iodoacetic acid (IAA) is a water disinfection byproduct (DBP) formed by reactions between oxidizing disinfectants and iodide. In vitro studies have indicated that IAA is one of the most cyto- and genotoxic DBPs. In humans, DBPs have been epidemiologically associated with reproductive dysfunction. In mouse ovarian culture, IAA exposure significantly inhibits antral follicle growth and reduces estradiol production. Despite this evidence, little is known about the effects of IAA on the other components of the reproductive axis: the hypothalamus and pituitary. We tested the hypothesis that IAA disrupts expression of key neuroendocrine factors and directly induces cell damage in the mouse pituitary. We exposed adult female mice to IAA in drinking water in vivo and found 0.5 and 10 mg/L IAA concentrations lead to significantly increased mRNA levels of kisspeptin (Kiss1) in the arcuate nucleus, while not affecting Kiss1 in the anteroventral periventricular nucleus. Both 10 mg/L IAA exposure in vivo and 20 μM IAA in vitro reduced follicle stimulating hormone (FSHβ)-positive cell number and Fshb mRNA expression. IAA did not alter luteinizing hormone (LHβ) expression in vivo, though exposure to 20 μM IAA decreased expression of Lhb and glycoprotein hormones, alpha subunit (Cga) mRNA in vitro. IAA also had toxic effects in the pituitary, inducing DNA damage and P21/Cdkn1a expression in vitro (20 μM IAA) and DNA damage and Cdkn1a expression in vivo (500 mg/L). These data, implicate IAA as a hypothalamic-pituitary-gonadal axis toxicant and suggest the pituitary is directly affected by IAA exposure.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Rachel Gonzalez ◽  
Karen E Weis ◽  
Andressa V Gonsioroski ◽  
Jodi A Flaws ◽  
Lori T Raetzman

Abstract Water disinfection byproducts (DBPs) are formed when chemicals used to decontaminate water come into contact with natural or synthetic organic material. DBPs have been linked to a range of health concerns including reproductive disfunction. One such DBP, the monohalogenated iodoacetic acid (IAA), is formed when iodide reacts with a disinfectant, for example, chlorine. IAA is of particular health concern; not only is iodide widely present in the water supply, especially in coastal communities and those near fracking sites, but IAA has been found to be one of the most cyto- and genotoxic DBPs. Further, a previous study has indicated that in vitro IAA exposure significantly inhibits antral follicle growth and reduces estradiol levels in ovaries. However, little is known about how IAA affects the other major components of the reproductive axis: the hypothalamus and pituitary. The reproductive axis relies on homeostatic release of hormones to communicate from one organ to another and alterations at any level may impact reproduction. So, we set out to test the hypothesis that exposure to IAA would lead to disrupted expression of key hypothalamic and pituitary genes related to reproductive function. We continually exposed female adult CD1 mice to 0.5, 10, 100, or 500 mg/L IAA in their drinking water for approximately 35 days (postnatal day 40 (P40) to their first day in diestrus following P75.) Whole pituitaries and hypothalamic punches containing the arcuate nucleus (ARC), anteroventral periventricular zone (AVPV), and medial preoptic nucleus (mPOA) were collected and processed for qPCR analysis. We find that while kisspeptin (Kiss1) expression in the AVPV - the population responsible for generating the LH surge - is unchanged, 0.5 mg/L IAA exposure significantly increases Kiss1 in the ARC, which controls pulsatile GnRH release, and there is a trending increase (p=.056) at 10mg/L. We also measured ARC expression of Neurokinin B (NKB; Tac2), a neuropeptide secreted by kisspeptin co-expressing neurons to autosynaptically stimulate Kiss1 release. We found no change in mRNA levels of Tac2. We also saw no significant changes in GnRH (Gnrh1) mRNA expression. At the level of the pituitary, there is no change in Lhb mRNA levels. Exposure to 10 mg/L IAA leads to significantly reduced Fshb expression, however FSH serum levels are not significantly changed. These data, taken together with previous findings in the ovary, indicate that IAA has the potential to disrupt each major level of the reproductive axis: ovarian follicle development and steroid synthesis, hypothalamic arcuate Kiss1 synthesis, and Fshb synthesis from the pituitary. Further research is necessary to elucidate at which levels IAA acts directly and at which it acts through action on another component of the axis. Additionally, future studies can clarify the mechanism through which IAA has these effects.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Kübra Taban ◽  
David Pauck ◽  
Mara Maue ◽  
Viktoria Marquardt ◽  
Hua Yu ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor in children and is frequently metastatic at diagnosis. Treatment with surgery, radiation and multi-agent chemotherapy may leave survivors of these brain tumors with long-term deficits as a consequence. One of the four consensus molecular subgroups of MB is the MYC-driven group 3 MB, which is the most malignant type and has a poor prognosis under current therapy. Thus, it is important to discover more effective targeted therapeutic approaches. We conducted a high-throughput drug screening to identify novel compounds showing efficiency in group 3 MB using both clinically established inhibitors (n=196) and clinically-applicable compounds (n=464). More than 20 compounds demonstrated a significantly higher anti-tumoral effect in MYChigh (n=7) compared to MYClow (n=4) MB cell models. Among these compounds, Navitoclax and Clofarabine showed the strongest effect in inducing cell cycle arrest and apoptosis in MYChigh MB models. Furthermore, we show that Navitoclax, an orally bioavailable and blood-brain barrier passing anti-cancer drug, inhibits specifically Bcl-xL proteins. In line, we found a significant correlation between BCL-xL and MYC mRNA levels in 763 primary MB patient samples (Data source: “R2 https://hgserver1.amc.nl”). In addition, Navitoclax and Clofarabine have been tested in cells obtained from MB patient-derived-xenografts, which confirmed their specific efficacy in MYChigh versus MYClow MB. In summary, our approach has identified promising new drugs that significantly reduce cell viability in MYChigh compared to MYClow MB cell models. Our findings point to novel therapeutic vulnerabilities for MB that need to be further validated in vitro and in vivo.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Renrong Wei ◽  
Cuiping Rong ◽  
Qingfeng Xie ◽  
Shouhai Wu ◽  
Yuchao Feng ◽  
...  

Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN)-striatum circuit, which is associated with glial activation and consequent chronic neuroinflammation. Optimized Yinxieling Formula (OYF) is a Chinese medicine that exerts therapeutical effect and antiinflammation property on psoriasis. Our previous study has proven that pretreatment with OYF could regulate glia-mediated inflammation in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Given that PD is a chronic degeneration disorder, this study applied another PD animal model induced by striatal injection of 6-hydroxydopamine (6-OHDA) to mimic the progressive damage of the SN-striatum dopamine system in rats. The OYF was administrated in the manner of pretreatment plus treatment. The effects of the OYF on motor behaviors were assessed with the apomorphine-induced rotation test and adjusting steps test. To confirm the effect of OYF on dopaminergic neurons and glia activation in this model, we analyzed the expression of tyrosine hydroxylase (TH) and glia markers, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP) in the SN region of the rat PD model. Inflammation-associated factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were further evaluated in this model and in interferon-γ- (INF-γ-) induced murine macrophages RAW264.7 cells. The results from the in vivo study showed that OYF reversed the motor behavioral dysfunction in 6-OHDA-induced PD rats, upregulated the TH expression, decreased the immunoreactivity of Iba-1 and GFAP, and downregulated the mRNA levels of TNF-α and COX-2. The OYF also trended to decrease the mRNA levels of IL-1β and iNOS in vivo. The results from the in vitro study showed that OYF significantly decreased the mRNA levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. Therefore, this study suggests that OYF exerts antiinflammatory effects, which might be related to the protection of dopaminergic neurons in 6-OHDA-induced chronic neurotoxicity.


Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5525-5531 ◽  
Author(s):  
Gary M. Leong ◽  
Sofia Moverare ◽  
Jesena Brce ◽  
Nathan Doyle ◽  
Klara Sjögren ◽  
...  

Abstract Suppressors of cytokine signaling (SOCS) are important negative regulators of cytokine action. We recently reported that estrogen stimulates SOCS-2 expression and inhibits GH signaling in kidney cells. The effects of estrogen on SOCS expression in other tissues are unclear. The aim of this study was to investigate in vivo and in vitro whether estrogen affected SOCS expression in the liver, a major target organ of GH. The in vivo hepatic effects of estrogen on ovariectomized mice lacking estrogen receptor (ER)-α, ERβ, or both and their wild-type littermates were examined by DNA microarray analysis. In vitro, the effects of estrogen on SOCS expression in human hepatoma cells were examined by reverse transcription quantitative PCR. Long-term (3 wk) estrogen treatment induced a 2- to 3-fold increase in hepatic expression of SOCS-2 and -3 in wild-type and ERβ knockout mice but not in those lacking ERα or both ER subtypes. Short-term treatment (at 24 h) increased the mRNA level of SOCS-3 but not SOCS-2. In cultured hepatoma cells, estrogen increased SOCS-2 and -3 mRNA levels by 2-fold in a time- and dose-dependent manner (P < 0.05). Estrogen induced murine SOCS-3 promoter activity by 2-fold (P < 0.05) in constructs containing a region between nucleotides −1862 and −855. Moreover, estrogen and GH had additive effects on the SOCS-3 promoter activity. In summary, estrogen, via ERα, up-regulated hepatic expression of SOCS-2 and -3, probably through transcriptional activation. This indicates a novel mechanism of estrogen regulation of cytokine action.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hai-Jun Gao ◽  
Xu-Dong Sun ◽  
Yan-Ping Luo ◽  
Hua-Sheng Pang ◽  
Xing-Ming Ma ◽  
...  

Abstract Background Echinococcosis, which is caused by the larvae of cestodes of the genus Echinococcus, is a parasitic zoonosis that poses a serious threat to the health of humans and animals globally. Albendazole is the drug of choice for the treatment of echinococcosis, but it is difficult to meet clinical goals with this chemotherapy due to its low cure rate and associated side effects after its long-term use. Hence, novel anti-parasitic targets and effective treatment alternatives are urgently needed. A previous study showed that verapamil (Vepm) can suppress the growth of Echinococcus granulosus larvae; however, the mechanism of this effect remains unclear. The aim of the present study was to gain insight into the anti-echinococcal effect of Vepm on Echinococcus with a particular focus on the regulatory effect of Vepm on calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-CaMKII) in infected mice. Methods The anti-echinococcal effects of Vepm on Echinococcus granulosus protoscoleces (PSC) in vitro and Echinococcus multilocularis metacestodes in infected mice were assessed. The morphological alterations in Echinococcus spp. induced by Vepm were observed by scanning electron microscopy (SEM), and the changes in calcium content in both the parasite and mouse serum and liver were measured by SEM-energy dispersive spectrometry, inductively coupled plasma mass spectrometry and alizarin red staining. Additionally, the changes in the protein and mRNA levels of CaM and CaMKII in infected mice, and in the mRNA levels of CaMKII in E. granulosus PSC, were evaluated after treatment with Vepm by immunohistochemistry and/or real-time quantitative polymerase chain reaction. Results In vitro, E. granulosus PSC could be killed by Vepm at a concentration of 0.5 μg/ml or higher within 8 days. Under these conditions, the ultrastructure of PSC was damaged, and this damage was accompanied by obvious calcium loss and downregulation of CaMKII mRNA expression. In vivo, the weight and the calcium content of E. multilocularis metacestodes from mice were reduced after treatment with 40 mg/kg Vepm, and an elevation of the calcium content in the sera and livers of infected mice was observed. In addition, downregulation of CaM and CaMKII protein and mRNA expression in the livers of mice infected with E. multilocularis metacestodes was found after treatment with Vepm. Conclusions Vepm exerted a parasiticidal effect against Echinococcus both in vitro and in vivo through downregulating the expression of Ca2+/CaM-CaMKII, which was over-activated by parasitic infection. The results suggest that Ca2+/CaM-CaMKII may be a novel drug target, and that Vepm is a potential anti-echinococcal drug for the future control of echinococcosis.


1999 ◽  
Vol 19 (12) ◽  
pp. 8422-8432 ◽  
Author(s):  
Olivier Donzé ◽  
Didier Picard

ABSTRACT The protein kinase Gcn2 stimulates translation of the yeast transcription factor Gcn4 upon amino acid starvation. Using genetic and biochemical approaches, we show that Gcn2 is regulated by the molecular chaperone Hsp90 in budding yeast Saccharomyces cerevisiae. Specifically, we found that (i) several Hsp90 mutant strains exhibit constitutive expression of a GCN4-lacZ reporter plasmid; (ii) Gcn2 and Hsp90 form a complex in vitro as well as in vivo; (iii) the specific inhibitors of Hsp90, geldanamycin and macbecin I, enhance the association of Gcn2 with Hsp90 and inhibit its kinase activity in vitro; (iv) in vivo, macbecin I strongly reduces the levels of Gcn2; (v) in a strain expressing the temperature-sensitive Hsp90 mutant G170D, both the accumulation and activity of Gcn2 are abolished at the restrictive temperature; and (vi) the Hsp90 cochaperones Cdc37, Sti1, and Sba1 are required for the response to amino acid starvation. Taken together, these data identify Gcn2 as a novel target for Hsp90, which plays a crucial role for the maturation and regulation of Gcn2.


Sign in / Sign up

Export Citation Format

Share Document