scholarly journals Novel Mutations and Genes That Impact on Growth in Short Stature of Undefined Aetiology: The EPIGROW Study

2020 ◽  
Vol 4 (10) ◽  
Author(s):  
Reena Perchard ◽  
Philip George Murray ◽  
Antony Payton ◽  
Georgina Lee Highton ◽  
Andrew Whatmore ◽  
...  

Abstract Background Children with short stature of undefined aetiology (SS-UA) may have undiagnosed genetic conditions. Purpose To identify mutations causing short stature (SS) and genes related to SS, using candidate gene sequence data from the European EPIGROW study. Methods First, we selected exonic single nucleotide polymorphisms (SNPs), in cases and not controls, with minor allele frequency (MAF) < 2%, whose carriage fitted the mode of inheritance. Known mutations were identified using Ensembl and gene-specific databases. Variants were classified as pathogenic, likely pathogenic, or variant of uncertain significance using criteria from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. If predicted by ≥ 5/10 algorithms (eg, Polyphen2) to be deleterious, this was considered supporting evidence of pathogenicity. Second, gene-based burden testing determined the difference in SNP frequencies between cases and controls across all and then rare SNPs. For genotype/phenotype relationships, we used PLINK, based on haplotype, MAF > 2%, genotype present in > 75%, and Hardy Weinberg equilibrium P > 10–4. Results First, a diagnostic yield of 10% (27/263) was generated by 2 pathogenic (nonsense in ACAN) and a further 25 likely pathogenic mutations, including previously known missense mutations in FANCB, IGFIR, MMP13, NPR2, OBSL1, and PTPN11. Second, genes related to SS: all methods identified PEX2. Another 7 genes (BUB1B, FANCM, CUL7, FANCA, PTCH1, TEAD3, BCAS3) were identified by both gene-based approaches and 6 (A2M, EFEMP1, PRKCH, SOS2, RNF135, ZBTB38) were identified by gene-based testing for all SNPs and PLINK. Conclusions Such panels improve diagnosis in SS-UA, extending known disease phenotypes. Fourteen genes related to SS included some known to cause growth disorders as well as novel targets.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
I. M. Krzyzewska ◽  
S. M. Maas ◽  
P. Henneman ◽  
K. v. d. Lip ◽  
A. Venema ◽  
...  

Abstract SETD1B is a component of a histone methyltransferase complex that specifically methylates Lys-4 of histone H3 (H3K4) and is responsible for the epigenetic control of chromatin structure and gene expression. De novo microdeletions encompassing this gene as well as de novo missense mutations were previously linked to syndromic intellectual disability (ID). Here, we identify a specific hypermethylation signature associated with loss of function mutations in the SETD1B gene which may be used as an epigenetic marker supporting the diagnosis of syndromic SETD1B-related diseases. We demonstrate the clinical utility of this unique epi-signature by reclassifying previously identified SETD1B VUS (variant of uncertain significance) in two patients.


2007 ◽  
Vol 157 (suppl_1) ◽  
pp. S27-S31 ◽  
Author(s):  
Ron G Rosenfeld

It has long been recognized that growth failure encompasses a diverse spectrum of underlying pathophysiological processes, a characteristic that has significantly impacted both the diagnosis and management of growth disorders. This problem is exacerbated by inherent difficulty in distinguishing the borders between the ‘normal range’ for stature and defined abnormal growth. Evaluation of GH secretion has proven problematic, both diagnostically and prognostically, except in cases of unequivocal GH deficiency. Measurement of serum concentrations of IGF-I, IGFBP-3, and ALS have proven useful in the assessment of GH responsiveness and have contributed to the concept of primary and secondary ‘IGF deficiency’. Nevertheless, there is great need for biochemical and/or molecular biomarkers that could: i) predict short- and long-term responsiveness to various therapeutic modalities, such as GH and IGF-I, and ii) predict potential risk for adverse effects of therapy. Candidate proteins and genes identified to date, and worthy of further evaluation, include IGF-I, IGF-I receptor, GH receptor and its variants (such as exon 3-deleted GHR), STAT5b and short stature homeobox. Proteomic analysis of serum samples pre- and post-treatment and correlation with clinical responsiveness should provide additional candidate biomarkers. Molecular studies to consider include: i) sequencing and mutation analysis of known genetic components of the GH–IGF axis; ii) evaluation of single nucleotide polymorphisms of candidate genes; and iii) identification of new candidate genes. It is proposed that the major target population to study is that of children currently labeled as idiopathic short stature (ISS). These children can be divided into those with: i) primary IGFD, where the focus should be on genes related to GHR, GHR signaling, and IGF-I gene expression, or ii) no IGFD (i.e. ‘true ISS’), where the focus should be on genes related to IGFR, IGF signaling and epiphyseal growth.


2019 ◽  
Vol 91 (4) ◽  
pp. 223-240 ◽  
Author(s):  
Jan M. Wit ◽  
Gerdine A. Kamp ◽  
Wilma Oostdijk ◽  

Based on a recent Dutch national guideline, we propose a structured stepwise diagnostic approach for children with growth failure (short stature and/or growth faltering), aiming at high sensitivity for pathologic causes at acceptable specificity. The first step is a detailed clinical assessment, aiming at obtaining relevant clinical clues from the medical history (including family history), physical examination (emphasising head circumference, body proportions and dysmorphic features) and assessment of the growth curve. The second step consists of screening: a radiograph of the hand and wrist (for bone age and assessment of anatomical abnormalities suggestive for a skeletal dysplasia) and laboratory tests aiming at detecting disorders that can present as isolated short stature (anaemia, growth hormone deficiency, hypothyroidism, coeliac disease, renal failure, metabolic bone diseases, renal tubular acidosis, inflammatory bowel disease, Turner syndrome [TS]). We advise molecular array analysis rather than conventional karyotyping for short girls because this detects not only TS but also copy number variants and uniparental isodisomy, increasing diagnostic yield at a lower cost. Third, in case of diagnostic clues for primary growth disorders, further specific testing for candidate genes or a hypothesis-free approach is indicated; suspicion of a secondary growth disorder warrants adequate further targeted testing.


2007 ◽  
Vol 28 (3) ◽  
pp. 161-164 ◽  
Author(s):  
Rosalind Arden ◽  
Nicole Harlaar ◽  
Robert Plomin

Abstract. An association between intelligence at age 7 and a set of five single-nucleotide polymorphisms (SNPs) has been identified and replicated. We used this composite SNP set to investigate whether the associations differ between boys and girls for general cognitive ability at ages 2, 3, 4, 7, 9, and 10 years. In a longitudinal community sample of British twins aged 2-10 (n > 4,000 individuals), we found that the SNP set is more strongly associated with intelligence in males than in females at ages 7, 9, and 10 and the difference is significant at 10. If this finding replicates in other studies, these results will constitute the first evidence of the same autosomal genes acting differently on intelligence in the two sexes.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 477-477
Author(s):  
Leah K Treffer ◽  
Edward S Rice ◽  
Anna M Fuller ◽  
Samuel Cutler ◽  
Jessica L Petersen

Abstract Domestic yak (Bos grunniens) are bovids native to the Asian Qinghai-Tibetan Plateau. Studies of Asian yak have revealed that introgression with domestic cattle has contributed to the evolution of the species. When imported to North America (NA), some hybridization with B. taurus did occur. The objective of this study was to use mitochondrial (mt) DNA sequence data to better understand the mtDNA origin of NA yak and their relationship to Asian yak and related species. The complete mtDNA sequence of 14 individuals (12 NA yak, 1 Tibetan yak, 1 Tibetan B. indicus) was generated and compared with sequences of similar species from GeneBank (B. indicus, B. grunniens (Chinese), B. taurus, B. gaurus, B. primigenius, B. frontalis, Bison bison, and Ovis aries). Individuals were aligned to the B. grunniens reference genome (ARS_UNL_BGru_maternal_1.0), which was also included in the analyses. The mtDNA genes were annotated using the ARS-UCD1.2 cattle sequence as a reference. Ten unique NA yak haplotypes were identified, which a haplotype network separated into two clusters. Variation among the NA haplotypes included 93 nonsynonymous single nucleotide polymorphisms. A maximum likelihood tree including all taxa was made using IQtree after the data were partitioned into twenty-two subgroups using PartitionFinder2. Notably, six NA yak haplotypes formed a clade with B. indicus; the other four haplotypes grouped with B. grunniens and fell as a sister clade to bison, gaur and gayal. These data demonstrate two mitochondrial origins of NA yak with genetic variation in protein coding genes. Although these data suggest yak introgression with B. indicus, it appears to date prior to importation into NA. In addition to contributing to our understanding of the species history, these results suggest the two major mtDNA haplotypes in NA yak may functionally differ. Characterization of the impact of these differences on cellular function is currently underway.


2021 ◽  
Vol 7 (2) ◽  
pp. 22
Author(s):  
Jamie Matteson ◽  
Stanley Sciortino ◽  
Lisa Feuchtbaum ◽  
Tracey Bishop ◽  
Richard S. Olney ◽  
...  

X-linked adrenoleukodystrophy (ALD) is a recent addition to the Recommended Uniform Screening Panel, prompting many states to begin screening newborns for the disorder. We provide California’s experience with ALD newborn screening, highlighting the clinical and epidemiological outcomes observed as well as program implementation challenges. In this retrospective cohort study, we examine ALD newborn screening results and clinical outcomes for 1,854,631 newborns whose specimens were received by the California Genetic Disease Screening Program from 16 February 2016 through 15 February 2020. In the first four years of ALD newborn screening in California, 355 newborns screened positive for ALD, including 147 (41%) with an ABCD1 variant of uncertain significance (VUS) and 95 males diagnosed with ALD. After modifying cutoffs, we observed an ALD birth prevalence of 1 in 14,397 males. Long-term follow-up identified 14 males with signs of adrenal involvement. This study adds to a growing body of literature reporting on outcomes of newborn screening for ALD and offering a glimpse of what other large newborn screening programs can expect when adding ALD to their screening panel.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Mario Tumminello ◽  
Antonella Gangemi ◽  
Federico Matina ◽  
Melania Guardino ◽  
Bianca Lea Giuffrè ◽  
...  

Abstract Background Hypohidrotic Ectodermal Dysplasia (HED) is a genetic disorder which affects structures of ectodermal origin. X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common form of disease. XLHED is characterized by hypotrichosis, hypohydrosis and hypodontia. The cardinal features of classic HED become obvious during childhood. Identification of a hemizygous EDA pathogenic variant in an affected male confirms the diagnosis. Case presentation We report on a male newborn with the main clinical characteristics of the X-linked HED including hypotrichosis, hypodontia and hypohidrosis. Gene panel sequencing identified a new hemizygous missense variant of uncertain significance (VUS) c.1142G > C (p.Gly381Ala) in the EDA gene, located on the X chromosome and inherited from the healthy mother. Conclusion Despite the potential functional impact of VUS remains uncharacterized, our goal is to evaluate the clinical potential consequences of missense VUS on EDA gene. Even if the proband’s phenotype is characteristic for classic HED, further reports of patients with same clinical phenotype and the same genomic variant are needed to consider this novel VUS as responsible for the development of HED.


2021 ◽  
Vol 14 (3) ◽  
pp. 235
Author(s):  
Jen-Sheng Pei ◽  
Chao-Chun Chen ◽  
Wen-Shin Chang ◽  
Yun-Chi Wang ◽  
Jaw-Chyun Chen ◽  
...  

The purpose of our study was to investigate whether genetic variations in lncRNA H19 were associated with susceptibility to childhood leukemia. Two hundred and sixty-six childhood leukemia patients and 266 healthy controls were enrolled in Taiwan, and two single nucleotide polymorphisms (SNPs), rs2839698 and rs217727, in H19 were genotyped and analyzed. There was a significant difference in the genotypic distribution of rs2839698 between patients and healthy controls (p = 0.0277). Compared to the wild-type CC genotype, the heterozygous variant CT and homozygous variant TT genotypes were associated with significantly increased risks of childhood leukemia with an adjusted odd ratio (OR) of 1.46 (95% confidence interval (CI), 1.08–2.14, p = 0.0429) and 1.94 (95%CI, 1.15–3.31, p = 0.0169), respectively (pfor tread = 0.0277). The difference in allelic frequencies between childhood leukemia patients and controls was also significant (T versus C, adjusted OR = 1.53, 95%CI, 1.13–1.79, p = 0.0077). There were no significant differences in the genotypic and allelic distributions of rs217727 between cases and controls. Interestingly, the average level of H19 rs2839698 was statistically significantly higher for patients with CT and TT genotypes than from those with the CC genotype (p < 0.0001). Our results indicate that H19 SNP rs2839698, but not rs217727, may serve as a novel susceptibility marker for childhood leukemia.


2019 ◽  
Vol 29 (2) ◽  
pp. 589-602
Author(s):  
Chan Wang ◽  
Shufang Deng ◽  
Leiming Sun ◽  
Liming Li ◽  
Yue-Qing Hu

The genome-wide association studies aim at identifying common or rare variants associated with common diseases and explaining more heritability. It is well known that common diseases are influenced by multiple single nucleotide polymorphisms (SNPs) that are usually correlated in location or function. In order to powerfully detect association signals, it is highly desirable to take account of correlations or linkage disequilibrium (LD) information among multiple SNPs in testing for association. In this article, we propose a test SLIDE that depicts the difference of the average multi-locus genotypes between cases and controls and derive its variance–covariance matrix in the retrospective design. This matrix is composed of the pairwise LD between SNPs. Thus SLIDE can borrow the strength from an external database in the population of interest with a few thousands to hundreds of thousands individuals to improve the power for detecting association. Extensive simulations show that SLIDE has apparent superiority over the existing methods, especially in the situation involving both common and rare variants, both protective and deleterious variants. Furthermore, the efficiency of the proposed method is demonstrated in the application to the data from the Wellcome Trust Case Control Consortium.


2002 ◽  
pp. 319-323 ◽  
Author(s):  
Y Rakover ◽  
A Silbergeld ◽  
I Lavi ◽  
R Masalha ◽  
IB Shlomo

OBJECTIVES: In the majority of children with short stature, the etiology is unknown. Mutations of the GH receptor (GHR) have been reported in a few children with apparent idiopathic short stature (ISS). These patients had low IGF-I, IGF-binding protein-3 (IGFBP-3) and GH-binding protein (GHBP), but a normal or exaggerated GH response to provocative stimuli, suggestive of partial GH insensitivity (GHI). We attempted to identify children with partial GHI syndrome, based on their response to GH provocative stimuli and other parameters of the GH-IGF-I axis. SUBJECTS AND METHODS: One hundred and sixty-four pre-pubertal children (97 boys, 67 girls) aged 7.2 (0.5-16.75) years were studied. All had short stature with height <3rd centile. The weight, bone age (BA) and body mass index (BMI) of the subjects, as well as the parents' heights and mid parental height (MPH) were assessed. Basal blood samples were taken for IGF-I, IGFBP-3 and GHBP. All subjects underwent a GH provocative test with either clonidine, arginine or insulin. The subjects were divided into three groups: (A) patients with peak GH concentration <18 mIU/l in two different provocative tests (GH deficiency - GHD, n=33); (B) patients with peak GH between 18.2 and 39.8 mIU/l (normal response, n=78); (C) patients with peak GH >40 mIU/l (exaggerated GH response, n=53). RESULTS: No significant differences were found in age, height (standard deviation score (SDS)), parental height (SDS) and the difference between chronological age and bone age (DeltaBA) between the groups. Patients with GHD were heavier (P=0.039) and had significantly higher BMI (SDS) (P=0.001) than the other groups. MPH (SDS) was lower in the group of exaggerated responders (P=0.04) compared with the other groups. No significant differences were found between the groups for the biochemical parameters when expressed nominally or in SDS, except for IGFBP-3 (SDS), which was lower in the GHD group (P=0.005). The GHBP levels were not lower in the group of exaggerated GH response to provocative stimuli. Height (SDS) correlated negatively with basal GH values in pooled data of all the subjects (r=-0.358, P<0.0001), in normal responders (r=-0.45, P<0.0001) and in the exaggerated responders (r=-0.341, P<0.0001), but not in the GHD group. CONCLUSION: Exaggerated GH response to provocative tests alone does not appear to be useful in identifying children with GHI.


Sign in / Sign up

Export Citation Format

Share Document