scholarly journals Somatostatin, as a Bridge Between the GH-Axis and the Gth-Axis

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A553-A554
Author(s):  
Naama Mizrahi ◽  
Lian Hollander-Cohen ◽  
Berta Levavi-Sivan

Abstract Somatostatin (SST) is a 14-amino acid peptide produced in the hypothalamus of vertebrates, including fish. It regulates many physiological processes such as growth development and metabolic processes in the animal’s body. Negative control of growth hormone in vivo and in vitro was characterized in several fish species such as salmon, goldfish, rainbow trout and tilapia. Although very important, the SST/SST-R system in Nile tilapia (Oreochromis niloticus) was not deeply characterized. The somatostatin system in tilapia possess two ligands (Somatostatin1b and Somatostatin 2), and five receptors (SST-R 1-5). Unlike mammals, in fish, FSH and LH are secreted from different cell populations in the pituitary. By performing cell specific transcriptome analysis of double-labelled transgenic tilapia expressing GFP and RFP in LH or FSH cells, respectively, we identified genes specifically enriched in each cell type. Analysis of the RNA-seq discovered 4 types of SST-Rs: sstr2, sstr3, sstr5 and sstr5x3. The specific localization of each SST-R was identified by In Situ hybridization with specific probes for each of the SST-Rs. SST-R2 and SST-R5x3 were expressed on LH and FSH cells, while SST-R5 was exclusively expressed on LH cells. Interestingly, SST-R3, which was expressed on GH secreting cells, was also expressed on both gonadotropin-secreting cells. Transactivation assays, using COS7 cell line transfected with tilapia SST-Rs together with the reporter plasmid CRE-luc, demonstrated an effect through the cAMP/PKA pathway. Signal transduction analysis demonstrated that SST agonist (Octreotide; IC50 = 0.8-60nM) decreased the cAMP/PKA pathway, while an opposite effect was found when SST antagonist (Cyclosomatostatin; EC50 = 0.1 - 188 nM) was used. To understand the physiological effects of somatostatin on gonadotropins and GH release, we examined the effect of ip injection (100 μg/kg BW) of somatostatin agonist and antagonist on plasma FSH, LH and GH levels. SST agonist decreased plasma GH and FSH levels, as fast as two hours post injection and their levels remained low until the end of the experiment. On the other hand, SST antagonist increased LH and FSH levels two hours post injection, but while FSH levels remained high during the entire experiment, LH levels went back to basal levels afterwards. Our results show - for the first time in fish - a direct effect of SST on gonadotropin release, that could serve as a bridge between the GH-axis and the GTH-axis. The research was funded by the Israel Science Foundation (ISF) no. 1540/17.

2019 ◽  
Author(s):  
Yaron Cohen ◽  
Krist Hausken ◽  
Yoav Bonfil ◽  
Michael Gutnick ◽  
Berta Levavi-Sivan

AbstractSpexin (SPX) is a 14 amino acid peptide hormone that has pleiotropic functions across vertebrates, one of which is involvement in the brain-pituitary-gonad axis of fish. SPX(1) has been identified in each class of vertebrates, and a second SPX (named SPX2) has been found in some non-mammalian species. We have cloned two spexin paralogs, designated as Spx1a and Spx1b, from Nile tilapia (Oreochromis niloticus) that have varying tissue distribution patterns. Spx1b is a novel peptide only identified in cichlid fish, and is more closely related to Spx1 than Spx2 homologs as supported by phylogenetic, synteny, and functional analyses. Kisspeptin, Spx, and galanin (Gal) peptides and their corresponding kiss receptors and Gal receptors (Galrs), respectively, are evolutionarily related. Cloning of six tilapia Galrs (Galr1a, Galr1b, Galr2a, Galr2b, Galr type 1, and Galr type 2) and subsequent in vitro second-messenger reporter assays for Gαs, Gαq, and Gαi suggests that Gal and Spx activate Galr1a/Galr2a and Galr2b, respectively. A decrease in plasma follicle stimulating hormone and luteinizing hormone concentrations was observed with injections of Spx1a or Spx1b in vivo. Additionally, application of Spx1a to pituitary slices decreased the firing rate of LH cells, suggesting direct inhibition at the pituitary level. These data collectively suggest an inhibitory mechanism of action against the secretion of gonadotropins for a traditional and a novel spexin paralog in cichlid species.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 861
Author(s):  
Elizabeth E. Niedert ◽  
Chenghao Bi ◽  
Georges Adam ◽  
Elly Lambert ◽  
Luis Solorio ◽  
...  

A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.


2009 ◽  
Vol 16 (6) ◽  
pp. 806-810 ◽  
Author(s):  
Nikkol Melnick ◽  
Gowrisankar Rajam ◽  
George M. Carlone ◽  
Jacquelyn S. Sampson ◽  
Edwin W. Ades

ABSTRACT P4, a 28-amino-acid peptide, is a eukaryotic cellular activator that enhances specific in vitro opsonophagocytic killing of multiple bacterial pathogens. In a previous study, we successfully recreated this phenomenon in mice in vivo by using a two-dose regimen of P4 and pathogen-specific antibodies, which significantly reduced moribundity in mice. For the present study, we hypothesized that the inclusion of a low-dose antibiotic would make it possible to treat the infected mice with a single dose containing a mixture of P4 and a pathogen-specific antibody. A single dose consisting of P4, intravenous immunoglobulin (IVIG), and ceftriaxone effectively reduced moribundity compared to that of untreated controls (n = 10) by 75% (P < 0.05) and rescued all (10 of 10) infected animals (P < 0.05). If rescued animals were reinfected with Streptococcus pneumoniae and treated with a single dose containing P4, IVIG, and ceftriaxone, they could be rerescued. This observation of the repeated successful use of P4 combination therapy demonstrates a low risk of tolerance development. Additionally, we examined the polymorphonuclear leukocytes (PMN) derived from infected mice and observed that P4 enhanced in vitro opsonophagocytic killing (by >80% over the control level; P < 0.05). This finding supports our hypothesis that PMN are activated by P4 during opsonophagocytosis and the recovery of mice from pneumococcal infection. P4 peptide-based combination therapy may offer an alternative and rapid immunotherapy to treat fulminant pneumococcal infection.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Pollyanna Francielli de Oliveira ◽  
Suzana Amorim Mendes ◽  
Nathália Oliveira Acésio ◽  
Luis Claudio Kellner Filho ◽  
Leticia Pereira Pimenta ◽  
...  

The medicinal plant Vochysia divergens is a colonizing tree species of the Pantanal, a unique and little explored wetland region in Brazil. This species is used in folk medicine as syrups and teas to treat respiratory infections, digestive disorders, asthma, scarring, and skin diseases. The objectives of this study were to evaluate the antioxidant, cytotoxic, and genotoxic potential of the ethanolic extract of Vochysia divergens leaves (VdE), as well as the influence of VdE and its major component (the flavone 3′,5-dimethoxy luteolin-7-O-β-glucopyranoside; 3′5 DL) on MMS-induced genotoxicity. The extract significantly reduced the viability of V79 cells in the colorimetric XTT assay at concentrations ≥ 39 μg/mL. A significant increase in micronucleus frequencies was observed in V79 cell cultures treated with VdE concentrations of 160 and 320 μg/mL. However, animals treated with the tested doses of VdE (500, 1000, and 2000 mg/kg b.w.) exhibited frequencies that did not differ significantly from those of the negative control group, indicating the absence of genotoxicity. The results also showed that VdE was effective in reducing MMS-induced genotoxicity at concentrations of 20, 40, and 80 μg/mL in the in vitro test system and at a dose of 15 mg/kg b.w. in the in vivo test system. Its major component 3′5 DL exerted no protective effect, suggesting that it is not responsible for the effect of the extract. The results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that VdE was able to scavenge 92.6% of free radicals. In conclusion, the results suggest that the protective effect of VdE may be related, at least in part, to the antioxidant activity of its chemical constituents.


Author(s):  
Chuan Wang ◽  
Dan Ma ◽  
Yimin Hua ◽  
Hongyu Duan

AbstractBreast cancer resistance protein (BCRP/ABCG2) is a critical drug efflux transporters by limiting drugs’ transplacental transfer rates. More investigations on the regulation of placental BCRP offer great promise for enabling pronounced progress in individualized and safe pharmacotherapy during pregnancy. Histone deacetylases (HDACs) play an important role in epigenetic regulation of placental genes. It was reported recently by us that HDAC1 was involved in placental BCRP regulation in vitro. The aim of this study was to further explore the effect of HDAC1 on placental BCRP expression and functionality in animals. Randomly assigned C57BL pregnant dams received intraperitoneal injections of a negative control siRNA or Hdac1 siRNA from embryonic day 7.5 (E7.5) to E15.5, respectively. At E16.5, glyburide (GLB), a probe for evaluating placental BCRP efflux functionality, was injected via the tail vein. Animals were sacrificed through cervical dislocation at various times (5–180 min) after drug administration. The maternal blood, placentas, and fetal-units were collected. GLB concentrations were determined by a validated high-performance liquid chromatography/mass spectrometry (HPLC-MS) assay. Real-time quantitative PCR (qRT-PCR), Western blot, and immunohistochemical (IHC) analysis were employed to identify mRNA/protein levels and localization of gene expressions, respectively. It was noted that Hdac1 inhibition significantly decreased placental Bcrp expression, with markedly increases of GLB concentrations and area under the concentration-time curve (AUC) in fetal-units. Particularly, the ratios of fetal-unit/maternal plasma GLB concentrations were also significantly elevated following Hdac1 repression. Taken together, these findings suggested that HDAC1 was involved in positive regulation of placental BCRP expression and functionality in vivo.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Vivek P Singh ◽  
Megumi Mathison ◽  
Jaya P Pinnamaneni ◽  
Deepthi Sanagasetti ◽  
Narasimhaswamy S Belaguli ◽  
...  

Objective: Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) by forced expression of cardiomyogenic factors, GMT (GATA4, Mef2c and Tbx5), has recently been demonstrated, suggesting a promising statregy for cardiac regeneration. However, the efficiency of direct reprogramming is usually relatively low and requires extensive epigenetic redesigning, although the underlying mechanism are largely unknown. Methods: In a recent study, we created a novel mutation in rat GATA 4 by replacing lysine residue with glutamine at position 299 i.e. (K299Q), to mimic constitutive acetylation and examined whether constitutive acetylation of GATA4, when compared with wild type GATA4, further enhance GMT-mediated direct reprogramming efficiency of induced cardiomyocytes in vitro and accordingly ventricular function after myocardial infarction in rat, in vivo . Results: We found that acetylated GATA 4 (K299Q), in the presence of Mef2c and Tbx5 upregulated cardiac-specific markers, suppressed fibroblast genes, in rat cardiac fibroblasts (RCFs) more efficiently when compared with Mef2c, Tbx5 plus wild type GATA4. FACS analyses revealed that G(K299Q) MT induced significantly more cardiomyocyte marker cardiac troponin T (cTnT) expression compared with GMT alone. Mechanistic studies demonstrated that the K299Q substitution, resulting in enriched p300 occupancy at the GATA 4 promoter, induced acetylation of Histine 3, decreased HDAC expression. In addition, substitution augmented the increase in an acetylated form of GATA-4 and its DNA binding and transcriptional activity, compared with wildtype GATA 4. In agreement with upregulated cTNT gene expression in vitro , echocardiographic analysis demonstrate that the acetylated G(K299Q) MT vectors have improved effect in enhancing ventricular function than GMT vectors from postinfarct baselines as compared to negative control [G(K299Q) MT, 15.6% ± 2.7%; G(WT)MT, 12.8% ± 1.7%; GFP, -2.3% ± 1.1%]. Conclusions: Collectivily, these data indicate that acetylated GATA4 (K299Q) significantly increases reprogramming efficiency of induced cardiomyocytes (iCMs), in vitro and in vivo, and provide new insight into the molecular mechanism underlying cardiac regeneration.


Author(s):  
Boussoualim Naouel ◽  
Trabsa Hayat ◽  
Krache Imane ◽  
Ouhida Soraya ◽  
Arrar Lekhmissi ◽  
...  

Background: Anchusa azurea Mill. (AA) is a medicinal plant largely used traditionally in folk medicine in Algeria, it is locally named: hamham. It is effective in the treatment of various diseases. Objectives: The aim of the present study is to determine the antioxidant, anti-inflammatory and anti-hemolytic effects of phenolic fractions from Anchusa azurea Mill. Methods: In this study, various extracts from Anchusa azurea Mill. (AA) using solvents with increasing polarity were prepared. The quantification of polyphenols and flavonoids was determined. The anti-radical activity of the different extracts was evaluated using DPPH and by measuring the inhibition of the oxidative degradation of β-carotene. The In vitro antihemolytic effect of the plant extracts is determined (CrE, ChE, AcE and AqE). For each extract, four concentrations were tested: 10.59, 21.18, 42.37, 84.74 µg/ml. Vitamin C is used as a standard. Free-radical attack was measured by measuring the HT50 (Half-Hemolysis Time). The anti-inflammatory effect using PMA on mice of the methanolic extract (CrE) was evaluated. Results: The quantification of polyphenols and flavonoids showed that ethyl acetate extract (AcE) contains a higher amount of polyphenols. However, chloroform extract (ChE) presents a higher amount of flavonoids. AcE showed an important scavenging activity using the DPPH radical (IC50= 68.35 µg/ml). The results showed that AcE also exhibited very great inhibition on the oxidation of β-carotene/linoleic acid (84.33%). All extracts increased the HT50 values (Half-Hemolysis Time) in a dose-dependent manner. The three highest concentrations (21.18, 42.37 and 84.74 µg / ml) of ChE caused a very significant delay (p ≤ 0.001) of hemolysis compared to the negative control and the positive control "VIT C". The anti-inflammatory effect using PMA on mice showed that the methanolic extract (CrE) of AA reduced the weight of the ear edema. Conclusions: This plant has a strong pharmacological power, which supports its traditional medicinal use.


1992 ◽  
Vol 12 (9) ◽  
pp. 4093-4103
Author(s):  
D Falb ◽  
T Maniatis

Expression of the Drosophila melanogaster Adh gene in adults requires a fat body-specific enhancer called the Adh adult enhancer (AAE). We have identified a protein in Drosophila nuclear extracts that binds specifically to a site within the AAE (adult enhancer factor 1 [AEF-1]). In addition, we have shown that AEF-1 binds specifically to two other Drosophila fat body enhancers. Base substitutions in the AEF-1 binding site that disrupt AEF-1 binding in vitro result in a significant increase in the level of Adh expression in vivo. Thus, the AEF-1 binding site is a negative regulatory element within the AAE. A cDNA encoding the AEF-1 protein was isolated and shown to act as a repressor of the AAE in cotransfection studies. The AEF-1 protein contains four zinc fingers and an alanine-rich sequence. The latter motif is found in other eukaryotic proteins known to be transcriptional repressors.


2019 ◽  
Vol 316 (6) ◽  
pp. E987-E997 ◽  
Author(s):  
Binbin Huang ◽  
Chen Huang ◽  
Huashan Zhao ◽  
Wen Zhu ◽  
Baobei Wang ◽  
...  

Chemerin and G protein-coupled receptor 1 (GPR1) are increased in serum and placenta in mice during pregnancy. Interestingly, we observed increased serum chemerin levels and decreased GPR1 expression in placenta of high-fat-diet-fed mice compared with chow-fed mice at gestational day 18. GPR1 protein and gene levels were significantly decreased in gestational diabetes mellitus (GDM) patient placentas. Therefore, we hypothesized that chemerin/GPR1 signaling might participate in the pathogenic mechanism of GDM. We investigated the role of GPR1 in carbohydrate homeostasis during pregnancy using pregnant mice transfected with small interfering RNA for GPR1 or a negative control. GPR1 knockdown exacerbated glucose intolerance, disrupted lipid metabolism, and decreased β-cell proliferation and insulin levels. Glucose transport protein-3 and fatty acid binding protein-4 were downregulated with reducing GPR1 in vivo and in vitro via phosphorylated AKT pathway. Taken together, our findings first demonstrate the expression of GPR1, the characterization of its direct biological effects in humans and mice, as well as the molecular mechanism that indicates the role of GPR1 signaling in maternal metabolism during pregnancy, suggesting a novel feedback mechanism to regulate glucose balance during pregnancy, and GPR1 could be a potential target for the detection and therapy of GDM.


Sign in / Sign up

Export Citation Format

Share Document