scholarly journals Association Between 131I Exposure After the Chernobyl Accident and Thyroid Volume in Children in Belarus

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A856-A857
Author(s):  
Ekaterina Chirikova ◽  
Elizabeth K Cahoon ◽  
Alexander Rozhko ◽  
Vladimir Drozdovitch ◽  
Mark P Little ◽  
...  

Abstract Thyroid enlargement can cause problems with swallowing or breathing and a decrease in accuracy of screening for thyroid cancer. Exposure to radioactive iodines after the 1986 Chernobyl accident is known to increase risk of thyroid cancer in those exposed at a young age, but little is known about its effects on thyroid volume, which could have important clinical implications. The objective of this study is to characterize the dose-response association between iodine-131 (131I) exposure and thyroid volume using data from a Belarusian-American cohort study of residents of Belarus exposed during childhood. Persons exposed to Chernobyl fallout in Belarus at the age of 18 years or younger had individual 131I doses to the thyroid gland estimated from direct thyroid activity measurements, radioecological and biokinetic models, and interview data on whereabouts and dietary habits collected during baseline screening in 1996-2001 (N=11,970; median age 21 years). Thyroid volume was estimated from thyroid ultrasound measurements during screening. Individuals with diagnoses of benign or malignant tumors of thyroid gland, any thyroid surgery or aplasia, and missing thyroid volume measurements were excluded (n=1,104). Dose and thyroid volume were log-transformed due to right-skewed distributions. We used a multivariable linear regression to estimate the dose-response association between 131I dose to the thyroid and thyroid volume accounting for confounding effects of sex, age at screening, and place of residence at the time of screening, a proxy for endemic iodine deficiency. To examine nonlinear effects, we added a quadratic term for the log-transformed dose. Among 10,866 participants, dose to thyroid ranged from 0.0005 to 39 gray (Gy) (median=0.3 Gy). In a linear regression model adjusted for confounders, log thyroid volume was best described by a linear-quadratic function of log dose (p<0.001 for log dose and log dose-squared coefficients). The largest effect was observed for doses 0.3-0.6 Gy (14%), then gradually decreased. Subjects with thyroid dose of 1 Gy had an average thyroid volume 13.6% (95% CI 8- 19.2%) higher compared to those with dose 1 mGy. Thyroid volume increased with age and was significantly higher for males compared to females and for those from Minsk city and area compared to other regions (both p<0.001). The adjusted R2-value was 30%, suggesting unaccounted factors that might better explain this association. This is the first study to assess the dose-response association between exposure to 131I and thyroid volume. Although statistically significant, the observed increase in thyroid volume with dose was small. Availability of measurements of iodine deficiency and dietary habits around the time of an accident in the future studies of nuclear accidents will be essential for understanding the mechanism of association between radiation dose and thyroid volume in young people.

2021 ◽  
Vol 14 (4) ◽  
pp. 45-59
Author(s):  
I. A. Zvonova ◽  
M. I. Balonov

A review of methods for assessing doses in the thyroid gland, predictions of the long-term consequences of its irradiation and the actual incidence of thyroid cancer in residents of four regions of the Russian Federation with the most significant radioactive fallout after the Chernobyl accident are presented. The method for assessing doses in the thyroid gland is based on the results of monitoring in May-June 1986 of radioiodine in the environment, food and in the body of residents. Thyroid doses in the population were used to justify medical and social protection measures, as well as epidemiological studies. In addition, the authorities needed forecasts of the possible morbidity of the population in order to organize adequate medical care. Most of the thyroid cancer cases were predicted among the adult population, which was not confirmed by observations 35 years after the accident. The prognosis of the incidence of thyroid cancer in preschool children differed in different studies due to the use of different coefficients of reducing the biological effectiveness of 131I radiation in the thyroid gland and long-term external and internal irradiation of the whole body with a low dose rate compared to the effect of acute exposure. The increase in the incidence of thyroid cancer among children began five years after the accident at the Chernobyl nuclear power plant. Examples of the dynamics of the incidence for children in the Bryansk region of the Russian Federation are given. The 2018 UNSCEAR Report showed that for 1986-2015, among children and adolescents under 18 years of age on the day of the accident in Belarus, Ukraine and four regions of Russia, more than 19 thousand thyroid cancer cases were detected, of which the share of radiation-induced diseases was estimated at 25%. For four regions of Russia, this amounts to 460 cases with a range of possible estimates from 130 to 900 cases. The highest morbidity was manifested among younger children exposed at the age of 0-4 years. In older children and adolescents, the proportion of radiation-induced diseases has significantly decreased 30 years after the accident. In general, early forecasts of radiation-induced thyroid cancer incidence in children in four regions of the Russian Federation with high levels of radioactive fallout are consistent with the data of subsequent 30-year epidemiological observations within an order of magnitude. With regard to thyroid cancer in adults, such a comparison is difficult, since no radiogenic increase in the incidence has been detected.


2000 ◽  
pp. 479-483 ◽  
Author(s):  
E Mezosi ◽  
I Molnar ◽  
A Jakab ◽  
E Balogh ◽  
Z Karanyi ◽  
...  

OBJECTIVE: To assess the iodine nutritional status and the prevalence of goitre during pregnancy in a region of Hungary that appeared to be iodine sufficient in previous studies. DESIGN: A cross-sectional voluntary screening study was organized in which 313 pregnant women participated. METHODS: Urine iodine concentration and the volume of the thyroid gland were measured in every woman. In the presence of low urinary iodine concentrations, goitre, or both, thyroid function tests were performed. RESULTS: Iodine deficiency was found in 57.1% of the pregnant women, and was severe in 15.6%. The volume of the thyroid gland was enlarged in 19.2% of individuals. Nodular goitre was found in 17 women (5.4%). The frequency of goitre and the mean thyroid volume were increased in the group of iodine-deficient women. In the 89 cases of iodine deficiency or goitre, thyrotrophin concentrations were in the normal range; however, the free triiodothyronine:free throxine ratio was increased in 97% of them, indicating that the thyroid gland was in a stimulated state in these individuals. CONCLUSIONS: Iodine deficiency with high prevalence of goitre was recognized among pregnant women in an area that previously appeared to be iodine sufficient. An unexpected mild iodine deficiency was also noted in the non-pregnant control group. Reassessment and continuous monitoring of iodine nutritional status is warranted even in populations that are apparently considered to be 'at no risk' of iodine deficiency, especially in pregnant women. Regular administration of iodine, starting at preconception or in early pregnancy and continuing during the period of nursing, is recommended in these regions.


2020 ◽  
Author(s):  
Vladimir Baranchukov ◽  
Elena Korobova ◽  
Sergey Romanov

<p>Modern geoinformation technologies are widely used in spatial data analysis including medical geography locating spatial distribution of site-specific diseases. Following obviously essential problems the major part of such maps have been constructed for the most dangerous diseases. Although thyroid goiter has been known since ancient times, but it was not earlier than the middle of XIXth century when Chatain has related this disease to deficiency of the particular chemical element (iodine). And not earlier than 1938 Vinogradov has coined the notion of biogeochemical provinces to distinguish areas of specific endemic disease of geochemical origin and summarized natural factors causing iodine deficiency in local diets and contributing to goiter manifestation. The Chernobyl accident has highlighted the problem of a combined negative impact of radioiodine contamination and stable iodine deficiency. Technogenic and natural isotopes of iodine have specific spatial structure and this fact opened new prospects in identification of areas under different risk levels by using GIS technology. To study the geochemical factors responsible for distribution of the thyroid gland diseases in Chernobyl fallout area we have created and develop a specialized geographic information system basing on the idea of a two-layers spatial structure of modern noosphere (Korobova, 2017) according to which the natural geochemical background reflected in the soil cover structure is overlain by technogenic contamination fields. As a result an interferential imagery is produced. This image can be interpreted as a risk map which in turn may be verified by health effects. The study was performed for 4 regions subjected to the Chernobyl accident (Bryansk, Oryol, Kaluga and Tula oblast’s). An overlay of natural iodine deficiency and technogenic iodine fallout map layers classified by 6 zones from minimum to maximum risk allowed to identify 12 zones and to evaluate a combined risk for 93 rural districts. Comparison of the created combined risk map and radionuclide contamination map with regional medical data on standardized incidence of thyroid cancer (code C-73 ICD-10) had a higher correlation (r = 0.493, n = 93) compared to the map of the levels of radionuclide loss. All this, obviously, demonstrates that the proposed GIS technology will be useful to adequately minimize in any case thyroid diseases.</p><p>References<br>Korobova, E.M. Principles of spatial organization and evolution of the biosphere and the noosphere. Geochem. Int. 55, 1205–1282 (2017) doi:10.1134/S001670291713002X</p>


Author(s):  
V.F. Stepanenko ◽  
◽  
A.D. Kaprin ◽  
S.A. Ivanov ◽  
P.V. Shegay ◽  
...  

Individual retrospective dosimetry was developed at A. Tsyb Medical Radiological Research Centre (A. Tsyb MRRC) after the Chernobyl accident for assessment and analysis of radiation effects on people lived in radioactively contaminated settlements in the Kaluga and Bryansk regions. The method was also used in radiation epidemiology case-control studies within frames of international pilot projects. The ob-tained data demonstrated reliable dose-response relationship for thyroid cancer in patients with diag-nosed thyroid cancer, who were children and adolescents at the time of the accident and resided in radi-oactively contaminated areas in the Bryansk region. The dose-response relationship for diagnosed inva-sive breast cancer was found in women, resided in radioactively contaminated settlements since the acci-dent till the first diagnosis of cancer that was established within the period from October 2008 to February 2013. Their age at diagnosis was under 55 years. At the same time, no dose-response relationship for leu-kaemia was found in children under 5 years old at the time of the accident. The individual retrospective dosimetry method has been updated and used in pilot studies for verifying conservative estimates of radi-ation doses to the population exposed to radiation as a result of nuclear tests at the Semipalatinsk nuclear test site, as well as for verifying estimates of external radiation doses to people affected by the accident at the Fukushima Daiichi NPP. The method was also used for estimating individual doses from residual radi-oactivity for the survivors of the Hiroshima and Nagasaki atomic bombings. The long-term collaboration continues under bilateral International Collaboration Agreements between the National Medical Research Radiological Centre and leading research centres in the Republic of Kazakhstan and Japan. Since 2016 researchers and physicians of A. Tsyb MRRC have modi-fied method of stimulated luminescence of natural and synthetic materials and developed innovative technology in vivo dosimetry that has been put into clinical practice for estimating spatial radiation doses distribution in internal organs at risk during the brachytherapy of prostate cancer, gynecologic and recur-rent pelvic tumors, as well as for estimating local radiation dose to the skin of the breast gland with the tumor. The 35-year experience in the development and application of methods for individual retrospective dosimetry after the Chernobyl accident formed the basis for identifying future-pointing trends for the de-velopment of novel applications of stimulated luminescence techniques. Radiation-induced stimulated luminescence dosimetry can be applicable in uncontrolled radiation events; retrospective dosimetry method applicable for neutron beam radiation therapy is under development. The method of in vivo do-simetry is useful in radiation oncology. Now assembled thermoluminiscent micro-sized dosimeters are used for arterial radioembolization. At present, feasibility of using items of clothing and special inserts (buttons, fastenings, etc.), parts of wearable electronic devices as natural dosimeters, as well as the feasi-bility of using luminescent microdosimeters, made of different materials, after exposure to high LET radiation ranged from a fraction of mGy to the dose greater than 60 Gy have been examined. Development of flexible planar microdosimeter assemblies in order to obtain more detailed information about possible discrepancy in distribution of planned and actual radia-tion doses to patients during radiotherapy is considered.


2017 ◽  
pp. 16-20
Author(s):  
S.I. Turchinа ◽  
◽  
T.A. Nachetova ◽  

The article highlights new data on the effect of thyroid dysfunction on the formation of secondary amenorrhea in adolescent girls who live for a long time in conditions of weak iodine deficiency. The objective: to determine the state of the thyroid system in girls with SA, taking into account the presence of thyroid disorders. Materials and methods. Under observation were 68 girls aged 14-17 years with SA, living in conditions of weak iodine deficiency in Kharkov and the Kharkov region. The examination provided for an ultrasound of the thyroid gland and determination of the functional state of the pituitary-thyroid system. Girls with SA entered the main group. Depending on the presence of thyreopathy, namely, diffuse non-toxic goiter (DNG), the patients of the main group were divided into two subgroups: 1-st subgroup consists of a girls with SA and normal thyroid volume (n=39); 2-nd subgroup consists of girls with SA and DNG (n=29). The control group included 78 female peers with normal thyroid volume, harmonious physical development and normal menstrual function. Results. The obtained results allowed to establish that the formation of SA in girls living in conditions of low iodine deficiency occurs against a background of thyroid dysfunction, the character of which differs in girls with normal thyroid gland volume and DNG. This can be regarded as a succession of stages of the pathological process when, in conditions of prolonged residence in regions with a mild iodine deficiency, a distearosis is formed which is characterized by an increase in the fT4 conversion in fT3, reflecting an increase in the fT3/fT4 ratio in the vast majority of the girls surveyed. These changes in the thyroid profile negatively affect the development of the reproductive system and can cause menstrual dysfunction even in the absence of thyroid disease. The conclusion. Prevention and treatment of SA in girls living in conditions of low iodine deficiency, provides long-term use of pharmacological drugs potassium iodide in age doses. Key words: girls, thyroid gland, thyroid status, secondary amenorrhea.


2021 ◽  
Vol 11 ◽  
Author(s):  
Vladimir Drozdovitch

IntroductionThe Chernobyl accident resulted in a considerable release of radioactivity to the atmosphere, particularly of Iodine-131 (131I), with the greatest contamination occurring in Belarus, Ukraine, and western part of Russia.Material and MethodsIncrease in thyroid cancer and other thyroid diseases incidence in population exposed to Chernobyl fallout in these counties was the major health effect of the accident. Therefore, a lot of attention was paid to the thyroid doses, mainly, the 131I intake during two months after the accident. This paper reviews thyroid doses, both the individual for the subjects of radiation epidemiological studies and population-average doses. Exposure to 131I intake and other exposure pathways to population of affected regions and the Chernobyl cleanup workers (liquidators) are considered.ResultsIndividual thyroid doses due to 131I intake varied up to 42 Gy and depended on the age of the person, the region where a person was exposed, and their cow’s milk consumption habits. Population-average thyroid doses among children of youngest age reached up to 0.75 Gy in the most contaminated area, the Gomel Oblast, in Belarus. Intake of 131I was the main pathway of exposure to the thyroid gland; its mean contribution to the thyroid dose in affected regions was more than 90%. The mean thyroid dose from inhalation of 131I for early Chernobyl cleanup workers was estimated to be 0.18 Gy. Individual thyroid doses due to different exposure pathways varied among 1,137 cleanup workers included in the epidemiological studies up to 9 Gy. Uncertainties associated with dose estimates, in terms of mean geometric standard deviation of individual stochastic doses, varied in range from 1.6 for doses based on individual-radiation measurements to 2.6 for “modelled” doses.ConclusionThe 131I was the most radiologically important radionuclide that resulted in radiation exposure to the thyroid gland and cause an increase in the of rate of thyroid cancer and other thyroid diseases in population exposed after the Chernobyl accident.


2001 ◽  
pp. 595-603 ◽  
Author(s):  
WM Wiersinga ◽  
J Podoba ◽  
M Srbecky ◽  
M van Vessem ◽  
HC van Beeren ◽  
...  

BACKGROUND: Iodine deficiency and endemic goiter have been reported in the past in The Netherlands, especially in the southeast. OBJECTIVE: To evaluate iodine intake and thyroid size in Dutch schoolchildren, contrasting those living in a formerly iodine-deficient region in the east (Doetinchem) with those living in an iodine-sufficient region in the west (Amsterdam area). DESIGN: Cross-sectional survey of 937 Dutch schoolchildren aged 6--18 years, of whom 390 lived in the eastern and 547 in the western part of the country. METHODS: Thyroid size was assessed by inspection and palpation as well as by ultrasound. Iodine intake was evaluated by questionnaires on dietary habits and by measurement of urinary iodine concentration. RESULTS: Eastern and western regions were similar with respect to median urinary iodine concentration (15.7 and 15.3 microg/dl, NS, Mann-Whitney U test), goiter prevalence by inspection and palpation (0.8 and 2.6%, P=0.08, chi-squared test), and thyroid volumes. The P97.5 values of thyroid volumes per age and body surface area group were all lower than the corresponding sex-specific normative WHO reference values. Iodized salt was not used by 45.7% of households. Daily bread consumption was five slices by boys and four slices by girls. Weekly milk consumption was 3 liters by boys and 2 liters by girls. Seafish was consumed once monthly. From these figures we calculated a mean daily iodine intake of 171 microg in boys and 143 microg in girls, in good agreement with the measured median urinary concentration of 16.7 microg/dl in boys and 14.5 microg/dl in girls. The sex difference in iodine excretion is fully accounted for by an extra daily consumption of one slice of bread (20 microg I) and one-seventh of a liter of milk (8.3 microg I) by boys. Thyroid volume increases with age, but a steep increase by 41% was observed in girls between 11 and 12 years, and by 55% in boys between 13 and 14 years, coinciding with peak height velocity. Girls have a larger thyroid volume at the ages of 12 and 13 years, but thyroid volume is larger in boys as of the age of 14 years. CONCLUSIONS: (1) Iodine deficiency disorders no longer exist in The Netherlands. (2) Bread consumption remains the main source of dietary iodine in The Netherlands; the contribution of iodized table salt and seafish is limited. (3) The earlier onset of puberty in girls renders their thyroid volume larger than in boys at the age of 12--13 years, but boys have a larger thyroid volume as of the age of 14 years.


2011 ◽  
Vol 164 (4) ◽  
pp. 585-590 ◽  
Author(s):  
Lone Banke Rasmussen ◽  
Lutz Schomburg ◽  
Josef Köhrle ◽  
Inge Bülow Pedersen ◽  
Birgit Hollenbach ◽  
...  

ObjectiveThe objective was to study the associations between serum selenium concentration and thyroid volume, as well as the association between serum selenium concentration and risk for an enlarged thyroid gland in an area with mild iodine deficiency before and after iodine fortification was introduced. Another objective was to examine the association between serum selenium concentration and prevalence of thyroid nodules.DesignCross-sectional study.MethodsWe studied participants of two similar cross-sectional studies carried out before (1997–1998, n=405) and after (2004–2005, n=400) introduction of iodine fortification. Serum selenium concentration and urinary iodine were measured, and the thyroid gland was examined by ultrasonography in the same subjects. Associations between serum selenium concentration and thyroid parameters were examined in multiple linear regression models or logistic regression models.ResultsSerum selenium concentration was found to be significantly, negatively associated with thyroid volume (P=0.006), and a low selenium status significantly increased the risk for thyroid enlargement (P=0.007). Furthermore, low serum selenium status had a tendency to increase the risk for development of multiple nodules (P=0.087).ConclusionsLow serum selenium concentration was associated with a larger thyroid volume and a higher prevalence of thyroid enlargement.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Ekaterina Chirikova ◽  
Robert J. McConnell ◽  
Patrick O’Kane ◽  
Vasilina Yauseyenka ◽  
Mark P. Little ◽  
...  

Abstract Background While there is a robust literature on environmental exposure to iodine-131 (131I) in childhood and adolescence and the risk of thyroid cancer and benign nodules, little is known about its effects on thyroid volume. Methods To assess the effect of 131I dose to the thyroid on the volume of the thyroid gland, we examined the data from the baseline screening of the Belarusian-American Cohort Study of residents of Belarus who were exposed to the Chernobyl fallout at ages ≤18 years. Thyroid dose estimates were based on individual thyroid activity measurements made shortly after the accident and dosimetric data from questionnaires obtained 10-15 years later at baseline screening. During baseline screening, thyroid gland volume was assessed from thyroid ultrasound measurements. The association between radiation dose and thyroid volume was modeled using linear regression where radiation dose was expressed with power terms to address non-linearity. The model was adjusted for attained age, sex, and place of residence, and their modifying effects were examined. Results The analysis was based on 10,703 subjects. We found a statistically significant positive association between radiation dose and thyroid volume (P < 0.001). Heterogeneity of association was observed by attained age (P < 0.001) with statistically significant association remaining only in the subgroup of ≥18 years at screening (P < 0.001). For this group, increase in dose from 0.0005 to 0.15 Gy was associated with a 1.27 ml (95% CI: 0.46, 2.07) increase in thyroid volume. The estimated effect did not change with increasing doses above 0.15 Gy. Conclusions This is the first study to examine the association between 131I dose to the thyroid gland and thyroid volume in a population of individuals exposed during childhood and systematically screened 10-15 years later. It provides evidence for a moderate statistically significant increase in thyroid volume among those who were ≥ 18 years at screening. Given that this effect was observed at very low doses and was restricted to a narrow dose range, further studies are necessary to better understand the effect.


Sign in / Sign up

Export Citation Format

Share Document