scholarly journals Inflammatory Cytokine TNF-a Controls Mesenchymal Stem Fate by Regulating JMJD3 Expression

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A235-A236
Author(s):  
Sivakumar Ramadoss

Abstract Introduction: Mesenchymal stem cells (MSCs) are multipotent progenitor cells that can differentiate in to osteoblast, adipocytes and chondrocytes. Lineage specification of MSC is governed by various systemic hormones, systemic and local growth factors and cytokines. TNF-α is an inflammatory cytokine produced at the site of tissue injuries and known to regulates MSC migration and differentiation. However, its role on lineage specification and differentiation of MSCs remain complex and elusive. In this study we explored the same utilizing human bone marrow and adipocyte derived MSCs. Experimental Methods: Human MSCs derived from bone marrow and adipocytes were differentiated in to osteoblast and adipocytes in the presence or absence of TNF-α. Expressions of osteoblast and adipocyte differentiation markers were assessed by qRT-PCR. The key epigenetic factor of lineage specification JMJD3 was depleted in MSCs utilizing lentiviral ShRNA. Results: TNF-α promoted the osteoblastic and inhibited the adipogenic differentiation of MSC as assessed by Alizarin and oil red O staining, respectively. Consistently, while inducing the key osteogenic factors, TNF- α repressed the adipogenic markers in MSCs. Mechanistically, TNF-α regulates MSC fate by inducing lysine-specific demethylase JMJD3/KDM6B, which is a key epigenetic factor that determines mesenchymal stem cell lineage specification. ShRNA mediated knockdown of JMD3 in MSCs inhibited TNF- α mediated activation and inhibition of osteogenic and adipogenic differentiation, respectively. Conclusion: Our study uncovers the novel mechanisms of TNF-α mediated MSC lineage commitment and differentiation and thus highlight JMJD3 as mediator of TNF-α actions in MSCs.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Lihong Fan ◽  
Ruiyu Liu ◽  
Jia Li ◽  
Zhibin Shi ◽  
Xiaoqian Dang ◽  
...  

Objective.Glucocorticoids can affect the function of bone marrow-derived mesenchymal stem cells (BMMSCs) adversely and merit the requirement for a strategy to correct this anomaly; we assessed the effect of low oxygen (2%) on BMMSCs from rabbits with osteonecrosis.Methods.Bone marrow-derived mesenchymal stem cells from normal rabbits and rabbits with osteonecrosis were divided into four groups: (1) normal-normoxia group, with normal BMMSCs cultured under 20% oxygen; (2) osteonecrosis-normoxia group, with BMMSCs from rabbits with osteonecrosis cultured under 20% oxygen; (3) osteonecrosis-low oxygen treated group, with BMMSCs from rabbits with osteonecrosis cultured under 2% oxygen; (4) normal-low oxygen treated group, with normal BMMSCs cultured under 2% oxygen. The proliferation, osteogenic, and adipogenic differentiation of MSCs and expression of stemness genes, osteogenic, and adipogenic differentiation markers were investigated.Results.Compared with BMMSCs from normal rabbits, those from osteonecrosis rabbits showed significantly reduced proliferation ability, repressed expression of stemness genes, decreased osteoblasts formation, and increased adipocytes formation, indicating an osteonecrosis-related impairment. Low oxygen (2%) treated BMMSCs from osteonecrosis rabbits showed not only increased proliferation and osteogenic potential but also decreased adipogenic potential.Conclusion.Low oxygen (2%) culture represents a novel strategy to augment BMMSC function affected by glucocorticoids and holds significance for future strategies to treat femoral head osteonecrosis.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Weerawan Hankamolsiri ◽  
Sirikul Manochantr ◽  
Chairat Tantrawatpan ◽  
Duangrat Tantikanlayaporn ◽  
Pairath Tapanadechopone ◽  
...  

Most type 2 diabetic patients are obese who have increased number of visceral adipocytes. Those visceral adipocytes release several factors that enhance insulin resistance making diabetic treatment ineffective. It is known that significant percentages of visceral adipocytes are derived from mesenchymal stem cells and high glucose enhances adipogenic differentiation of mouse bone marrow-derived MSCs (BM-MSCs). However, the effect of high glucose on adipogenic differentiation of human bone marrow and gestational tissue-derived MSCs is still poorly characterized. This study aims to investigate the effects of high glucose on proliferation as well as adipogenic and osteogenic differentiation of human MSCs derived from bone marrow and several gestational tissues including chorion, placenta, and umbilical cord. We found that high glucose reduced proliferation but enhanced adipogenic differentiation of all MSCs examined. The expression levels of some adipogenic genes were also upregulated when MSCs were cultured in high glucose. Although high glucose transiently downregulated the expression levels of some osteogenic genes examined, its effect on the osteogenic differentiation levels of the MSCs is not clearly demonstrated. The knowledge gained from this study will increase our understanding about the effect of high glucose on adipogenic differentiation of MSCs and might lead to an improvement in the diabetic treatment in the future.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 457-457
Author(s):  
Tamisha Y. Vaughan-Whitley ◽  
Hikaru Nishio ◽  
Barry Imhoff ◽  
Zhengqi Wang ◽  
Silvia T. Bunting ◽  
...  

Abstract Macrophages are responsible for protecting the body against foreign invaders. We have been studying the role of Grb2-associated binding proteins (Gabs) in macrophage biology. In mice, Gabs are adaptor proteins that include three family members (Gab1, Gab2, and Gab3) that play critical regulatory roles in modulating cytokine receptor signaling. Gab2 knockout mice have no developmental defects but have impaired allergic responses, osteoclast defects, altered mast cell development, and altered hematopoiesis. Gab3 knockout mice have no defined phenotypes alone and although highly expressed in macrophages, a functional role was not found despite considerable focus on this cell type. Therefore, we set out to determine the combined role of Gab2 and Gab3 to determine whether they performed redundant functions not observable in single knockout mice. To analyze regulation of macrophage cytokine production, a Gab2/3 deficient mouse model was generated on the C57BL/6 background. Bone Marrow Derived Macrophages (BMDM) were expanded from the bone marrow (BM) of wild-type (WT), Gab2 and Gab3 single knockout and Gab2/3 knockout mice and found to similarly co-express CD11b and F4/80. However, Gab2/3 knockout BM produced only 30% of wild-type BMDM numbers. Despite reductions in BMDM absolute numbers, isolated BMDM demonstrated significant induction of pro-inflammatory cytokines TNF-α and IL-12 and anti-inflammatory cytokine IL-10 mRNA at baseline. Interestingly, after LPS stimulation (100ng/ml) we detected much greater induction of TNF-α and IL-12 mRNA and protein expression. Interestingly, despite increased IL-10 mRNA induction in Gab2/3 knockout BMDM, no IL-10 protein expression could be detected by Luminex assay. No changes were observed in production of interferon or STAT1 activation in these BMDM. Studies have shown that rapamycin treatment of macrophages suppresses mTORC1 and subsequently reduces IL-10 production and promotes pro-inflammatory cytokine production. Gab2 is known for its role in regulating the PI3K pathway through interactions with the p85 regulatory subunit of PI3K. Therefore, we also examined whether mTOR activation was effected by Gab2/3 deficiency causing altered cytokine expression. Deletion of Gab2/3 in BMDMs treated with LPS showed an inhibition of 4EBP1 phosphorylation and increased AKT phosphorylation. These results suggest that Gabs may play a critical role in modulating mTOR activation and potentially causing defects in protein translation that reflect in reduced IL-10 cytokine levels in Gab2/3 knockout cells. IL-10 has a critical immunoregulatory role that is dysregulated in patients with inflammatory bowel disease. IL-10 deficient mice develop colitis due to loss of mucosal immune tolerance. Strikingly, as early as two months of age in vivo 12/32 (37.5%) Gab2/3 knockout mice developed rectal prolapse and suffered from diarrhea within a six month period. Histological analysis of isolated colons using a scoring system confirmed spontaneous development of colitis in Gab2/3 knockout mice compared to no phenotypes observed in WT and single knockout controls. To determine whether the BM was directly involved in the disease, BM chimeras were generated using irradiated WT mice as recipients and Gab2/3 knockout mice as donors. Susceptible recipients receiving Gab2/3 knockout BM showed a more invasive colitis phenotype than the spontaneous disease and resulted in forced euthanization due to body weight decreases greater than 25%. Multiple ulcerations were present in most of the colon proximal region, with extensive epithelial damage, transmural inflammation, and in some mice adenocarcinoma. Notably, we did not observe adenocarcinoma in untransplanted Gab2/3 knockout mice, suggesting that epithelial deletion of Gab2/3 may suppress cancer whereas in the bone marrow chimera model, the epithelial cells are WT and can be transformed. Similar phenotypes were also observed in secondary transplant recipients. Lastly, treatment of Gab2/3 knockout mice with dextran-sodium-sulfate (DSS) induced rapid severe colitis that resulted in death of 80% and 40% of Gab2/3 knockout and WT mice respectively. Overall, these observations demonstrate a major redundant role for Gab2 and Gab3 in macrophage immune surveillance required for the prevention of colitis in mice. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (21) ◽  
pp. 8044
Author(s):  
Jung Hwan Oh ◽  
Fatih Karadeniz ◽  
Youngwan Seo ◽  
Chang-Suk Kong

Natural products, especially phenols, are promising therapeutic agents with beneficial effects against aging-related complications such as osteoporosis. This study aimed to investigate the effect of quercetin 3-O-β-D-galactopyranoside (Q3G), a glycoside of a common bioactive phytochemical quercetin, on osteogenic and adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). hBM-MSCs were induced to differentiate into osteoblasts and adipocytes in the presence or absence of Q3G and the differentiation markers were analyzed to observe the effect. Q3G treatment stimulated the osteoblastogenesis markers: cell proliferation, alkaline phosphatase (ALP) activity and extracellular mineralization. In addition, it upregulated the expression of RUNX2 and osteocalcin protein as osteoblastogenesis regulating transcription factors. Moreover, Q3G treatment increased the activation of osteoblastogenesis-related Wnt and bone morphogenetic protein (BMP) signaling displayed as elevated levels of phosphorylated β-catenin and Smad1/5 in nuclear fractions of osteo-induced hBM-MSCs. The presence of quercetin in adipo-induced hBM-MSC culture inhibited the adipogenic differentiation depicted as suppressed lipid accumulation and expression of adipogenesis markers such as PPARγ, SREBP1c and C/EBPα. In conclusion, Q3G supplementation stimulated osteoblast differentiation and inhibited adipocyte differentiation in hBM-MSCs via Wnt/BMP and PPARγ pathways, respectively. This study provided useful information of the therapeutic potential of Q3G against osteoporosis mediated via regulation of MSC differentiation.


Author(s):  
Dana Foudah ◽  
Juliana Redondo ◽  
Cristina Caldara ◽  
Fabrizio Carini ◽  
Giovanni Tredici ◽  
...  

AbstractMesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells). Recent in vitro studies revealed that, in the absence of any kind of differentiation stimuli, undifferentiated MSCs express neural differentiation markers, but the literature data do not all concur. Considering their promising therapeutic potential for neurodegenerative diseases, it is very important to expand our knowledge about this particular biological property of MSCs. In this study, we confirmed the spontaneous expression of neural markers (neuronal, glial and progenitor markers) by undifferentiated human MSCs (hMSCs) and in particular, we demonstrated that the neuronal markers βIII-tubulin and NeuN are expressed by a very high percentage of hMSCs, regardless of the number of culture passages and the culture conditions. Moreover, the neuronal markers βIII-tubulin and NeuN are still expressed by hMSCs after in vitro osteogenic and adipogenic differentiation. On the other hand, chondrogenically differentiated hMSCs are negative for these markers. Our findings suggest that the expression of neuronal markers could be common to a wide range of cellular types and not exclusive for neuronal lineages. Therefore, the expression of neuronal markers alone is not sufficient to demonstrate the differentiation of MSCs towards the neuronal phenotype. Functional properties analysis is also required.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2690
Author(s):  
Fatih Karadeniz ◽  
Jung Hwan Oh ◽  
Hyun Jin Jo ◽  
Youngwan Seo ◽  
Chang-Suk Kong

Natural bioactive substances are promising lead compounds with beneficial effects on various health problems including osteoporosis. In this context, the goal of this study was to investigate the effect of myricetin 3-O-β-D-galactopyranoside (M3G), a glycoside of a known bioactive phytochemical myricetin, on bone formation via osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). The hBM-MSCs were induced to differentiate into osteoblasts and adipocytes in the presence or absence of M3G and the differentiation markers were analyzed. Osteoblastogenesis-induced cells treated with M3G exhibited stimulated differentiation markers: cell proliferation, alkaline phosphatase (ALP) activity, and extracellular mineralization. In terms of intracellular signaling behind the stimulatory effect of M3G, the expression of RUNX2 and osteopontin transcription factors were upregulated. It has been shown that M3G treatment increased the activation of Wnt and BMP as a suggested mechanism of action for its effect. On the other hand, M3G treatment during adipogenesis-inducement of hBM-MSCs hindered the adipogenic differentiation shown as decreased lipid accumulation and expression of PPARγ, SREBP1c, and C/EBPα, adipogenic transcription factors. In conclusion, M3G treatment stimulated osteoblast differentiation and inhibited adipocyte differentiation in induced hBM-MSCs. Osteoblast formation was stimulated via Wnt/BMP and adipogenesis was inhibited via the PPARγ pathway. This study provided necessary data for further studies to utilize the therapeutic potential of M3G against osteoporosis via regulation of bone marrow stromal cell differentiation.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4444
Author(s):  
Thao Quyen Cao ◽  
Nguyen Viet Phong ◽  
Jang Hoon Kim ◽  
Dan Gao ◽  
Hoang Le Tuan Anh ◽  
...  

The bitter melon, Momordica charantia L., was once an important food and medicinal herb. Various studies have focused on the potential treatment of stomach disease with M. charantia and on its anti-diabetic properties. However, very little is known about the specific compounds responsible for its anti-inflammatory activities. In addition, the in vitro inhibitory effect of M. charantia on pro-inflammatory cytokine production by lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells (BMDCs) has not been reported. Phytochemical investigation of M. charantia fruit led to the isolation of 15 compounds (1−15). Their chemical structures were elucidated spectroscopically (one- and two-dimensional nuclear magnetic resonance) and with electrospray ionization mass spectrometry. The anti-inflammatory effects of the isolated compounds were evaluated by measuring the production of the pro-inflammatory cytokines interleukin IL-6, IL-12 p40, and tumor necrosis factor α (TNF-α) in LPS-stimulated BMDCs. The cucurbitanes were potent inhibitors of the cytokines TNF-α, IL-6, and IL-12 p40, indicating promising anti-inflammatory effects. Based on these studies and in silico simulations, we determined that the ligand likely docked in the receptors. These results suggest that cucurbitanes from M. charantia are potential candidates for treating inflammatory diseases.


2020 ◽  
Vol 90 (1-2) ◽  
pp. 103-112 ◽  
Author(s):  
Michael J. Haas ◽  
Marilu Jurado-Flores ◽  
Ramadan Hammoud ◽  
Victoria Feng ◽  
Krista Gonzales ◽  
...  

Abstract. Inflammatory and oxidative stress in endothelial cells are implicated in the pathogenesis of premature atherosclerosis in diabetes. To determine whether high-dextrose concentrations induce the expression of pro-inflammatory cytokines, human coronary artery endothelial cells (HCAEC) were exposed to either 5.5 or 27.5 mM dextrose for 24-hours and interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor α (TNF α) levels were measured by enzyme immunoassays. To determine the effect of antioxidants on inflammatory cytokine secretion, cells were also treated with α-tocopherol, ascorbic acid, and the glutathione peroxidase mimetic ebselen. Only the concentration of IL-1β in culture media from cells exposed to 27.5 mM dextrose increased relative to cells maintained in 5.5 mM dextrose. Treatment with α-tocopherol (10, 100, and 1,000 μM) and ascorbic acid (15, 150, and 1,500 μM) at the same time that the dextrose was added reduced IL-1β, IL-6, and IL-8 levels in culture media from cells maintained at 5.5 mM dextrose but had no effect on IL-1β, IL-6, and IL-8 levels in cells exposed to 27.5 mM dextrose. However, ebselen treatment reduced IL-1β, IL-6, and IL-8 levels in cells maintained in either 5.5 or 27.5 mM dextrose. IL-2 and TNF α concentrations in culture media were below the limit of detection under all experimental conditions studied suggesting that these cells may not synthesize detectable quantities of these cytokines. These results suggest that dextrose at certain concentrations may increase IL-1β levels and that antioxidants have differential effects on suppressing the secretion of pro-inflammatory cytokines in HCAEC.


Sign in / Sign up

Export Citation Format

Share Document