scholarly journals MicroRNA-9-5p inhibits proliferation and induces apoptosis of human hypertrophic scar fibroblasts through targeting peroxisome proliferator-activated receptor β

Biology Open ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. bio051904
Author(s):  
Chi-Yung Chai ◽  
I.-Chun Tai ◽  
Rui Zhou ◽  
Junlong Song ◽  
Chaoying Zhang ◽  
...  

ABSTRACTHypertrophic scar (HS) is a dermal fibro-proliferative disorder result from abnormal wound healing after skin injury. MicroRNA-9-5p (miR-9-5p) has been reported to be upregulated and closely related to collagen proteins in human dermal fibroblasts. However, the correlation and possible mechanism between miR-9-5p and HS require further investigation. The expressions of miR-9-5p in HS tissues and HS fibroblasts were detected by quantitative real-time PCR (RT-qPCR). The expression level of peroxisome proliferator-activated receptor β (PPARβ) was measured by RT-qPCR assay. The protein levels of PPARβ, α-SMA, Vimentin, COL1A, cyclin D1, bcl-2, and bax were detected by western blot assay. The effect of miR-9-5p and PPARβ on HS fibroblasts proliferation and apoptosis were detected by cell counting kit-8 (CCK-8) and flow cytometry assays. The interaction between miR-9-5p and PPARβ was predicted by TargetScan, and then confirmed by dual-luciferase reporter assay. MiR-9-5p expression was downregulated in HS tissues and HS fibroblasts. MiR-9-5p inhibited the levels of extracellular matrix-associated genes (α-SMA, Vimentin, COL1A) in HS fibroblasts. MiR-9-5p repressed proliferation and induced apoptosis of HS fibroblasts. PPARβ is a target gene of miR-9-5p. The silencing of PPARβ expression hindered proliferation and expedited apoptosis of HS fibroblasts. MiR-9-5p suppressed proliferation and promoted apoptosis of HS fibroblasts by targeting PPARβ. In this paper, we firstly disclosed that miR-9-5p hampered extracellular matrix deposition and proliferation, and induced apoptosis by targeting PPARβ in HS fibroblasts. Our findings provided a new role of miR-9-5p/PPARβ in the occurrence and development of HS fibroblasts, promising a new target for HS.

2020 ◽  
Vol 10 (3) ◽  
pp. 352-359
Author(s):  
Pengju Fan ◽  
Zhen Li ◽  
Wuyuan Tan ◽  
Man Fang

The current study aimed to explore the role and mechanism of microRNA-425-5p (miR-425-5p) in hypertrophic scar (HS) development. Firstly, we used reverse transcription-quantitative polymerase chain reaction (qRT-PCR)to detect the expression of miR-425-5p in human hypertrophic scar fibroblasts (hHSFs) and HS tissues. qRT-PCR assay showed that miR-425-5p level significantly down-regulated in HS tissues and hHSFs. Next, we performed TargetScan and dual-luciferase reporter assay to predict and verify Smad2 was the target gene of miR-425-5p. In order to determine the role of miR-425-5p in HS formation, miR-425-5p was over-expressed or knockdown in hHSFs through transfection with miR-425-5p mimic or miR-425-5p inhibitor. CCK-8 assay and cell apoptosis analysis were carried out to measure cell viability and apoptosis. Protein expression was assessed by Western blotting. The findings indicated that miR-425-5p mimic transfection inhibited cell viability, promoted cell apoptosis and repressed Smad2, Col I, and Col III expression in hHSFs. Notably, the transfection of Smad2-plasmid eliminated the effects of miR-425-5p mimic on hHSFs. However, miR-425-5p inhibitor transfection had opposite effects on hHSFs, and were eliminated by the transfection of Smad2-siRNA. In conclusion, these findings suggested that miR-425-5p inhibited the hHSFs viability, induced hHSFs apoptosis and repressed extracellular matrix deposition of hHSFs through regulating Smad2. Therefore, miR-425-5p might be a novel therapeutic target for HS treatment.


2021 ◽  
Vol 35 ◽  
pp. 205873842110167
Author(s):  
Zhensen Zhu ◽  
Bo Chen ◽  
Liang Peng ◽  
Songying Gao ◽  
Jingdong Guo ◽  
...  

Activated M2 macrophages are involved in hypertrophic scar (HS) formation via manipulating the differentiation of fibroblasts to myofibroblasts having the proliferative capacity and biological function. However, the function of exosomes derived from M2 macrophages in HS formation is unclear. Thus, this study aims to investigate the role of exosomes derived by M2 in the formation of HS. To understand the effect of exosomes derived from M2 macrophages on formation of HS, M2 macrophages were co-cultured with human dermal fibroblast (HDF) cells. Cell Counting Kit-8 assay was performed to evaluate HDF proliferation. To evaluate the migration and invasion of HDFs, wound-healing and transwell invasion assays were performed, respectively. To investigate the interaction between LINC01605 and miR-493-3p, a dual-luciferase reporter gene assay was adopted; consequently, an interaction between miR-493-3p and AKT1 was detected. Our results demonstrated that exosomes derived from M2 macrophages promoted the proliferation, migration, and invasion of HDFs. Additionally, we found that long noncoding RNA LINC01605, enriched in exosomes derived from M2 macrophages, promoted fibrosis of HDFs and that GW4869, an inhibitor of exosomes, could revert this effect. Mechanistically, LINC01605 promoted fibrosis of HDFs by directly inhibiting the secretion of miR-493-3p, and miR-493-3p down-regulated the expression of AKT1. Exosomes derived from M2 macrophages promote the proliferation and migration of HDFs by transmitting LINC01605, which may activate the AKT signaling pathway by sponging miR-493-3p. Our results provide a novel approach and basis for further investigation of the function of M2 macrophages in HS formation.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Allan Ramirez ◽  
Erin N. Ballard ◽  
Jesse Roman

Transforming growth factorβ1 (TGFβ1) promotes fibrosis by, among other mechanisms, activating quiescent fibroblasts into myofibroblasts and increasing the expression of extracellular matrices. Recent work suggests that peroxisome proliferator-activated receptorγ(PPARγ) is a negative regulator of TGFβ1-induced fibrotic events. We, however, hypothesized that antifibrotic pathways mediated by PPARγare influenced by TGFβ1, causing an imbalance towards fibrogenesis. Consistent with this, primary murine primary lung fibroblasts responded to TGFβ1 with a sustained downregulation of PPARγtranscripts. This effect was dampened in lung fibroblasts deficient in Smad3, a transcription factor that mediates many of the effects of TGFβ1. Paradoxically, TGFβ1 stimulated the activation of the PPARγgene promoter and induced the phosphorylation of PPARγin primary lung fibroblasts. The ability of TGFβ1 to modulate the transcriptional activity of PPARγwas then tested in NIH/3T3 fibroblasts containing a PPARγ-responsive luciferase reporter. In these cells, stimulation of TGFβ1 signals with a constitutively active TGFβ1 receptor transgene blunted PPARγ-dependent reporter expression induced by troglitazone, a PPARγactivator. Overexpression of PPARγprevented TGFβ1 repression of troglitazone-induced PPARγ-dependent gene transcription, whereas coexpression of PPARγand Smad3 transgenes recapitulated the TGFβ1 effects. We conclude that modulation of PPARγis controlled by TGFβ1, in part through Smad3 signals, involving regulation of PPARγexpression and transcriptional potential.


Endocrinology ◽  
2021 ◽  
Vol 162 (11) ◽  
Author(s):  
Tsai-Der Chuang ◽  
Derek Quintanilla ◽  
Drake Boos ◽  
Omid Khorram

Abstract The objective of this study was to determine the expression and functional role of a long noncoding RNA (lncRNA) MIAT (myocardial infarction–associated transcript) in leiomyoma pathogenesis. Leiomyoma compared with myometrium (n = 66) expressed significantly more MIAT that was independent of race/ethnicity and menstrual cycle phase but dependent on MED12 (mediator complex subunit 12) mutation status. Leiomyomas bearing the MED12 mutation expressed higher levels of MIAT and lower levels of microRNA 29 family (miR-29a, -b, and -c) compared with MED12 wild-type leiomyomas. Using luciferase reporter activity and RNA immunoprecipitation analysis, MIAT was shown to sponge the miR-29 family. In a 3-dimensional spheroid culture system, transient transfection of MIAT siRNA in leiomyoma smooth muscle cell (LSMC) spheroids resulted in upregulation of miR-29 family and downregulation of miR-29 targets, collagen type I (COL1A1), collagen type III (COL3A1), and TGF-β3 (transforming growth factor β-3). Treatment of LSMC spheroids with TGF-β3 induced COL1A1, COL3A1, and MIAT levels, but repressed miR-29 family expression. Knockdown of MIAT in LSMC spheroids blocked the effects of TGF-β3 on the induction of COL1A1 and COL3A1 expression. Collectively, these results underscore the physiological significance of MIAT in extracellular matrix accumulation in leiomyoma.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Bing Song ◽  
Yao Sun ◽  
Yafen Chu ◽  
Jing Wang ◽  
Hongwei Zheng ◽  
...  

Objective. High-fat-diet- (HFD-) induced hepatic cell apoptosis is common in mice with nonalcoholic fatty liver disease (NAFLD). We aim to investigate the effect of Ginsenoside Rb1 (GRb1) on hepatocyte apoptosis. Methods. C57BL/6J mice with HFD were used to induce a liver-injured model with cell apoptosis. In addition, GRb1 was used to treat HFD-induced apoptosis in a liver with or without inhibitor of peroxisome proliferator-activated receptor γ (PPAR-γ). Results. Compared with C57BL/6J mice with common chow, there are downregulated PPAR-γ but upregulated cell apoptosis in the liver of mice with HFD. Furthermore, GRb1 elevated the hepatic PPAR-γ level and suppressed hepatocytic apoptosis. However, GW9662 abolished the effects of GRb1 on apoptosis in the liver. Conclusions. GRb1 alleviated HFD-induced apoptosis of hepatocytes of mice via PPAR-γ.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenhua Du ◽  
Lei Wang ◽  
Yu Xia

Abstract Background Ovarian cancer (OC) is the gynecologic cancer with the highest mortality. Circular RNAs (circRNAs) play a vital role in the development and progression of cancer. This study aimed to explore the potential role of circ_0015756 in OC and its molecular mechanism. Methods The levels of circ_0015756, microRNA-942-5p (miR-942-5p) and Cullin 4B (CUL4B) were determined by quantitative real-time PCR (qRT-PCR) or Western blot assay. Cell proliferation, apoptosis, migration and invasion were assessed by Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry and transwell assay. The levels of proliferation-related and metastasis-related proteins were measured by Western blot assay. The relationship between miR-942-5p and circ_0015756 or CUL4B was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft assay was used to analyze tumor growth in vivo. Results Circ_0015756 and CUL4B levels were increased, while miR-942-5p level was decreased in OC tissues and cells. Depletion of circ_0015756 suppressed proliferation, migration and invasion and promoted apoptosis in OC cells. Down-regulation of circ_0015756 hindered OC cell progression via modulating miR-942-5p. Also, up-regulation of miR-942-5p impeded OC cell development by targeting CUL4B. Mechanistically, circ_0015756 up-regulated CUL4B via sponging miR-942-5p. Moreover, circ_0015756 silencing inhibited tumor growth in vivo. Conclusion Knockdown of circ_0015756 suppressed OC progression via regulating miR-942-5p/CUL4B axis, suggesting that circ_0015756 might be a potential therapeutic target for ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document