Mechanisms of dorsal-ventral patterning in noggin-induced neural tissue

Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2477-2488 ◽  
Author(s):  
A.K. Knecht ◽  
R.M. Harland

We have investigated mechanisms of dorsal-ventral patterning of neural tissue, using Xenopus ectoderm neuralized by noggin protein. This tissue appears to be patterned dorsoventrally; cp1-1, a gene expressed in the dorsal brain, and etr-1, a gene largely excluded from the dorsal brain, are expressed in separate territories in noggin-treated explants (Knecht, A. K., Good, P. J., Dawid, I. B. and Harland, R. M. (1995) Development 121, 1927–1936). Here we show further evidence that this pattern represents a partial dorsal-ventral organization. Additionally, we test two mechanisms that could account for this pattern: a dose-dependent response to a gradient of noggin protein within the explant, and regulative cell-cell interactions. We show that noggin exhibits concentration-dependent effects, inducing cp1-1 at low doses but repressing it at high doses. Since noggin acts by antagonizing Bone Morphogenetic Protein (BMP) signaling, this result suggests that BMPs also may act in a dose-dependent manner in vivo. However, in the absence of a noggin gradient, regulative cell-cell interactions can also pattern the tissue. Such regulation is facilitated by increased motility of noggin-treated cells. Finally, the response of cells to both of these patterning mechanisms is ultimately controlled by a third process, the changing competence of the responding tissue.

2004 ◽  
Vol 24 (23) ◽  
pp. 10256-10262 ◽  
Author(s):  
Sean Park ◽  
Young Jae Lee ◽  
Ho-Jae Lee ◽  
Tsugio Seki ◽  
Kwon-Ho Hong ◽  
...  

ABSTRACT Btg2 is a primary p53 transcriptional target gene which may function as a coactivator-corepressor and/or an adaptor molecule that modulates the activities of its interacting proteins. We have generated Btg2-null mice to elucidate the in vivo function of Btg2. Btg2-null mice are viable and fertile but exhibit posterior homeotic transformations of the axial vertebrae in a dose-dependent manner. Consistent with its role in vertebral patterning, Btg2 is expressed in the presomitic mesoderm, tail bud, and somites during somitogenesis. We further provide biochemical evidence that Btg2 interacts with bone morphogenetic protein (BMP)-activated Smads and enhances the transcriptional activity of BMP signaling. In view of the genetic evidence that reduced BMP signaling causes posteriorization of the vertebral pattern, we propose that the observed vertebral phenotype in Btg2-null mice is due to attenuated BMP signaling.


2019 ◽  
Vol 100 (6) ◽  
pp. 1648-1660 ◽  
Author(s):  
Sadman Sakib ◽  
Aya Uchida ◽  
Paula Valenzuela-Leon ◽  
Yang Yu ◽  
Hanna Valli-Pulaski ◽  
...  

Abstract Three-dimensional (3D) organoids can serve as an in vitro platform to study cell–cell interactions, tissue development, and toxicology. Development of organoids with tissue architecture similar to testis in vivo has remained a challenge. Here, we present a microwell aggregation approach to establish multicellular 3D testicular organoids from pig, mouse, macaque, and human. The organoids consist of germ cells, Sertoli cells, Leydig cells, and peritubular myoid cells forming a distinct seminiferous epithelium and interstitial compartment separated by a basement membrane. Sertoli cells in the organoids express tight junction proteins claudin 11 and occludin. Germ cells in organoids showed an attenuated response to retinoic acid compared to germ cells in 2D culture indicating that the tissue architecture of the organoid modulates response to retinoic acid similar to in vivo. Germ cells maintaining physiological cell–cell interactions in organoids also had lower levels of autophagy indicating lower levels of cellular stress. When organoids were treated with mono(2-ethylhexyl) phthalate (MEHP), levels of germ cell autophagy increased in a dose-dependent manner, indicating the utility of the organoids for toxicity screening. Ablation of primary cilia on testicular somatic cells inhibited the formation of organoids demonstrating an application to screen for factors affecting testicular morphogenesis. Organoids can be generated from cryopreserved testis cells and preserved by vitrification. Taken together, the testicular organoid system recapitulates the 3D organization of the mammalian testis and provides an in vitro platform for studying germ cell function, testicular development, and drug toxicity in a cellular context representative of the testis in vivo.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Nizar Abd Manan ◽  
Norazlina Mohamed ◽  
Ahmad Nazrun Shuid

Oxidative stress and apoptosis can disrupt the bone formation activity of osteoblasts which can lead to osteoporosis. This study was conducted to investigate the effects ofγ-tocotrienol on lipid peroxidation, antioxidant enzymes activities, and apoptosis of osteoblast exposed to hydrogen peroxide (H2O2). Osteoblasts were treated with 1, 10, and 100 μM ofγ-tocotrienol for 24 hours before being exposed to 490 μM (IC50) H2O2for 2 hours. Results showed thatγ-tocotrienol prevented the malondialdehyde (MDA) elevation induced by H2O2in a dose-dependent manner. As for the antioxidant enzymes assays, all doses ofγ-tocotrienol were able to prevent the reduction in SOD and CAT activities, but only the dose of 1 μM of GTT was able to prevent the reduction in GPx. As for the apoptosis assays,γ-tocotrienol was able to reduce apoptosis at the dose of 1 and 10 μM. However, the dose of 100 μM ofγ-tocotrienol induced an even higher apoptosis than H2O2. In conclusion, low doses ofγ-tocotrienol offered protection for osteoblasts against H2O2toxicity, but itself caused toxicity at the high doses.


1991 ◽  
Vol 124 (6) ◽  
pp. 672-678 ◽  
Author(s):  
Yan-Wan Wu ◽  
Constance L. Chik ◽  
Barry D. Albertson ◽  
W. Marston Linehan ◽  
Richard A. Knazek

Abstract. Gossypol, an antifertility agent, has inhibitory actions on many membrane-associated enzymes, suggesting that this agent might have a generalized effect on cell membranes. This hypothesis was examined in the present study using membranes and dispersed cells prepared from human and rat adrenal glands. Four parameters were determined: microviscosity as measured by fluorescence polarization of human adrenal microsomal- and mitochondrial-enriched membranes, adrenal steroidogenic enzymes; and cAMP and cortisol responses to ACTH. It was found that gossypol increased the polarization constants of microsomes and mitochondria in a dose-dependent manner. Of the three adrenal enzymes tested, both 3β-hydroxysteroid dehydrogenase Δ5-Δ4 isomerase and 11-hydroxylase were inhibited by gossypol, but not 21-hydroxylase. Using intact human adrenocortical cells, high doses of gossypol also inhibited the ACTH-stimulated cAMP and cortisol levels. The in vivo corticosterone response to ACTH in rats subjected to chronic gossypol treatment was also found to be reduced. These findings suggest that gossypol has multiple effects on adrenal function. Its effects on membrane microviscosity, adrenal steroidogenesis, cAMP and corticosterone responses to ACTH stimulation probably occur through a generalized membrane effect.


1987 ◽  
Author(s):  
C Cordova ◽  
F Violi ◽  
D Praticò ◽  
A Ghiselli ◽  
C Alessandri ◽  
...  

Low doses of aspirin (20 mg/day) were previously reported to be uneffective in preventing platelet aggregation (PA) induced by pairs of aggregating agents such as PAF and adrenalin.This was in part attributed to the inability of such treatment to inhibit lipo oxygenase-dependent PA.The latter can be observed in vitro in"aspl rinated"platelets stimulated with high quantities of aggregating -agents.The aim of this study was to evaluate if the lipooxygenase-dependent PA was influenced by aspirin in a dose-dependent fashion. PA was studied in platelet rich plasma (PRP)(Born's method) by using threshold doses of aggregating agents (TDA) such as PAF(4-75 nM),epinephrine(0.6-2 μM) and collagen(2-4 μg/ml).PA performed in PRP pretrated with 100μM aspirin was fully prevented;in the same samples thromboxane (Tx) A2 evaluated by its metabolite Tx B2 was almost absent.Increasing amount of PAF(20 fold TDA),epinephrine(20 fold TDA) and collagen (36 fold TDA) do aggregate"aspirinated"pla telets;similarly"aspirinated"platelets aggregate when stimulated-with a pair of aggregating agents (TDA of PAF+epinephrine).This phenomenon was not detected if platelets were incubated with higher amounts of aspirin (250-500 μM).The study suggests that aspirin could influence lipooxygenase-dependent PA.This hypothesis is sup ported by a research showing the aspirin inhibits dose-dependently platelet HETE formation.A further study is now in progress to eva luate the influence of high doses of aspirin on cyclooxygenase-i"n dependent PA in vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2415-2415
Author(s):  
Hongbo Lu ◽  
Zhihong Zeng ◽  
Yuexi Shi ◽  
Sergej Konoplev ◽  
Donald Wong ◽  
...  

Abstract The chemokine receptor CXCR4 is critically involved in the migration of hematopoietic cells towards the stromal derived factor (SDF-1α)-producing bone marrow microenvironment. We and others have previously demonstrated that stroma/leukemia interactions mediate protection of leukemic cells from chemotherapy-induced apoptosis (Konopleva, Leukemia 2002). Using a peptide analog of SDF-1α designated CTCE-9908, we tested the hypothesis that CXCR4 inhibition interferes with stromal/leukemia cell interactions resulting in increased sensitivity to chemotherapy. Our results showed that CTCE-9908 significantly inhibits SDF-1α-induced migration of U937 (43% inhibition) and OCI-AML3 cells (40% inhibition) in a dose-dependent manner. In three of the four primary AML samples which expressed CXCR4 on cell surface and migrated in response to SDF-1α, 50 μg/ml CTCE-9908 reduced SDF-1α-induced migration of leukemic blasts (60%, 19% and 50% inhibition respectively). In in vitro co-culture systems, stromal cells significantly protected OCI-AML3 cells from chemotherapy induced apoptosis [no MS-5, 75.2±5.2% annexinV(+); with MS-5, 59±1.1% annexinV(+)]. Western blot analysis revealed that CTCE-9908 inhibits Akt and Erk phosphorylation in a dose-dependent manner in the OCI-AML3 cell line stimulated by SDF-1α. Blockade of CXCR4 expression with CTCE-9908 markedly abrogated the protective effects of stromal cells on OCI-AML3 [Ara-C, 59±1.1% annexinV(+); Ara-C + CTCE-9908, 76.9±1.35 annexinV(+)]. Most importantly, it decreased stroma-mediated protection from AraC-induced apoptosis in four out of five primary AML samples with surface expression of functional CXCR4 (mean increase, 25.1±9.3% compared to chemotherapy alone). In vivo, subcutaneous administration of 1.25mg CTCE-9908 induced mobilization of leukemic cells from primary AML patient transplanted into NOD/Scid-IL2Rγ-KO mice (from 15% to 27% circulating leukemic cells 1 hour post CTCE-9908 injection). Taken together, our data suggest that SDF-1α/CXCR4 interactions contribute to the resistance of leukemic cells to chemotherapy-induced apoptosis via retention of leukemic cells in the bone marrow microenvironment niches. Disruption of these interactions by the potent CXCR4 inhibitor CTCE-9908 represents a novel strategy for targeting leukemia cell/bone marrow microenvironment interaction. Based on these observations, in vivo experiments are ongoing to characterize the efficacy of chemotherapy combined with CTCE-9908.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Bo Gao ◽  
Qiang Huang ◽  
Qiang Jie ◽  
Wei-Guang Lu ◽  
Long Wang ◽  
...  

Abstract Free fatty acids display diverse effects as signalling molecules through GPCRs in addition to their involvement in cellular metabolism. GPR120, a G protein-coupled receptor for long-chain unsaturated fatty acids, has been reported to mediate adipogenesis in lipid metabolism. However, whether GPR120 also mediates osteogenesis and regulates BMMSCs remain unclear. In this study, we showed that GPR120 targeted the bi-potential differentiation of BMMSCs in a ligand dose-dependent manner. High concentrations of TUG-891 (a highly selective agonist of GPR120) promoted osteogenesis via the Ras-ERK1/2 cascade, while low concentrations elevated P38 and increased adipogenesis. The fine molecular regulation of GPR120 was implemented by up-regulating different integrin subunits (α1, α2 and β1; α5 and β3). The administration of high doses of TUG-891 rescued oestrogen-deficient bone loss in vivo, further supporting an essential role of GPR120 in bone metabolism. Our findings, for the first time, showed that GPR120-mediated cellular signalling determines the bi-potential differentiation of BMMSCs in a dose-dependent manner. Additionally, the induction of different integrin subunits was involved in the cytoplasmic regulation of a seesaw-like balance between ERK and p38 phosphorylation. These findings provide new hope for developing novel remedies to treat osteoporosis by adjusting the GPR120-mediated differentiation balance of BMMSCs.


1989 ◽  
Vol 61 (03) ◽  
pp. 463-467 ◽  
Author(s):  
G M Smith

SummaryIn this study, 5-hydroxytryptamine (5-HT) caused a dose- dependent fall in the circulating platelet count suggesting that 5-HT receptors are activated in rat platelets to cause platelet adhesion and aggregation. When low doses of adenosine diphosphate (ADP) were simultaneously injected with 5-HT, there was a significant potentiation of the responses to ADR Ketanserin significantly reduced the potentiated responses. When higher doses of ADP were infused with bolus injections of 5-HT there was no potentiation and ketanserin did not reduce these responses. Ketanserin did not inhibit the collagen-induced fall in circulating platelet count, but did significantly increase the rate of return to the basal platelet count compared with control. 5-HT did not cause a fall in platelet count in guinea-pigs


1996 ◽  
Vol 76 (01) ◽  
pp. 111-117 ◽  
Author(s):  
Yasuto Sasaki ◽  
Junji Seki ◽  
John C Giddings ◽  
Junichiro Yamamoto

SummarySodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), are known to liberate nitric oxide (NO). In this study the effects of SNP and SIN-1 on thrombus formation in rat cerebral arterioles and venules in vivo were assessed using a helium-neon (He-Ne) laser. SNP infused at doses from 10 Μg/kg/h significantly inhibited thrombus formation in a dose dependent manner. This inhibition of thrombus formation was suppressed by methylene blue. SIN-1 at a dose of 100 Μg/kg/h also demonstrated a significant antithrombotic effect. Moreover, treatment with SNP increased vessel diameter in a dose dependent manner and enhanced the mean red cell velocity measured with a fiber-optic laser-Doppler anemometer microscope (FLDAM). Blood flow, calculated from the mean red cell velocity and vessel diameters was increased significantly during infusion. In contrast, mean wall shear rates in the arterioles and venules were not changed by SNP infusion. The results indicated that SNP and SIN-1 possessed potent antithrombotic activities, whilst SNP increased cerebral blood flow without changing wall shear rate. The findings suggest that the NO released by SNP and SIN-1 may be beneficial for the treatment and protection of cerebral infarction


2018 ◽  
Vol 1 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Darío Acuña-Castroviejo ◽  
Maria T Noguiera-Navarro ◽  
Russel J Reiter ◽  
Germaine Escames

Due to the broad distribution of extrapineal melatonin in multiple organs and tissues, we analyzed the presence and subcellular distribution of the indoleamine in the heart of rats. Groups of sham-operated and pinealectomized rats were sacrificed at different times along the day, and the melatonin content in myocardial cell membranes, cytosol, nuclei and mitochondria, were measured. Other groups of control animals were treated with different doses of melatonin to monitor its intracellular distribution. The results show that melatonin levels in the cell membrane, cytosol, nucleus, and mitochondria vary along the day, without showing a circadian rhythm. Pinealectomized animals trend to show higher values than sham-operated rats. Exogenous administration of melatonin yields its accumulation in a dose-dependent manner in all subcellular compartments analyzed, with maximal concentrations found in cell membranes at doses of 200 mg/kg bw melatonin. Interestingly, at dose of 40 mg/kg b.w, maximal concentration of melatonin was reached in the nucleus and mitochondrion. The results confirm previous data in other rat tissues including liver and brain, and support that melatonin is not uniformly distributed in the cell, whereas high doses of melatonin may be required for therapeutic purposes.


Sign in / Sign up

Export Citation Format

Share Document