The role of the msh homeobox gene during Drosophila neurogenesis: implication for the dorsoventral specification of the neuroectoderm

Development ◽  
1997 ◽  
Vol 124 (16) ◽  
pp. 3099-3109 ◽  
Author(s):  
T. Isshiki ◽  
M. Takeichi ◽  
A. Nose

Development of the Drosophila central nervous system begins with the delamination of neural and glial precursors, called neuroblasts, from the neuroectoderm. An early and important step in the generation of neural diversity is the specification of individual neuroblasts according to their position. In this study, we describe the genetic analysis of the msh gene which is likely to play a role in this process. The msh/Msx genes are one of the most highly conserved families of homeobox genes. During vertebrate spinal cord development, Msx genes (Msx1-3) are regionally expressed in the dorsal portion of the developing neuroectoderm. Similarly in Drosophila, msh is expressed in two longitudinal bands that correspond to the dorsal half of the neuroectoderm, and subsequently in many dorsal neuroblasts and their progeny. We showed that Drosophila msh loss-of-function mutations led to cell fate alterations of neuroblasts formed in the dorsal aspect of the neuroectoderm, including a possible dorsal-to-ventral fate switch. Conversely, ectopic expression of msh in the entire neuroectoderm severely disrupted the proper development of the midline and ventral neuroblasts. The results provide the first in vivo evidence for the role of the msh/Msx genes in neural development, and support the notion that they may perform phylogenetically conserved functions in the dorsoventral patterning of the neuroectoderm.

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Yang Zhou ◽  
Yawen Tang ◽  
Lianzhong Zhao ◽  
Rui Lu ◽  
Jianyi Zhang

Cardiovascular disease is still the leading cause of death in the United States. Due to the limited regenerative capacity of adult hearts, the damage caused by heart injury could not be reversed and often progressed into heart failure. In need of cardiovascular disease treatment, many therapies aimed at either cell transplantation or cell regeneration have been proposed. Direct reprogramming of somatic cells into induced cardiomyocytes (iCMs) is considered to be a promising strategy for regenerative medicine. The induction of cardiomyocytes from non-myocytes has been achieved efficiently via ectopic expression of reprogramming factors both in vitro and in vivo with mice models. However, as human cells are more resistant to the reprogramming process, the generation of human iCMs (hiCMs) has been restricted by the factor that using more complex cocktails generated only functionally immature cells with lower efficiency and longer conversion time. The inefficiency of hiCMs production called for the identification and elucidation of underlying species-specific regulatory mechanisms in human, and removal of the additional epigenetic barriers which might be damping the hiCMs reprogramming. Here, we identified a human-specific epigenetic barrier, Enhancer of zesta homolog 2 (EZH2), via an unbiased loss-of-function screening. With the knockdown of EZH2, the hiCM reprogramming efficiency was significantly increased, accompanied with profound repression of collagen and extracellular matrix genes, which are related to the formation of fibrosis. Consistently, Inhibition of EZH2 catalytic activity via small molecules promotes hiCM reprogramming, suggesting that EZH2’s inhibitory effect was mediated by epigenetic regulation of histone modifications. Therefore, our study revealed a previously unrecognized regulatory mechanism of human cardiac reprogramming, which allows us to overcome the fibroblast fate barriers and ease the cardiac cell fate conversion.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 131-142
Author(s):  
Laura A Johnston ◽  
Bruce D Ostrow ◽  
Christine Jasoni ◽  
Karen Blochlinger

Abstract The cut locus (ct) codes for a homeodomain protein (Cut) and controls the identity of a subset of cells in the peripheral nervous system in Drosophila. During a screen to identify ct-interacting genes, we observed that flies containing a hypomorphic ct mutation and a heterozygous deletion of the Antennapedia complex exhibit a transformation of mouthparts into leg and antennal structures similar to that seen in homozygous proboscipedia (pb) mutants. The same phenotype is produced with all heterozygous pb alleles tested and is fully penetrant in two different ct mutant backgrounds. We show that this phenotype is accompanied by pronounced changes in the expression patterns of both ct and pb in labial discs. Furthermore, a significant proportion of ct mutant flies that are heterozygous for certain Antennapedia (Antp) alleles have thoracic defects that mimic loss-of-function Antp phenotypes, and ectopic expression of Cut in antennal discs results in ectopic Antp expression and a dominant Antp-like phenotype. Our results implicate ct in the regulation of expression and/or function of two homeotic genes and document a new role of ct in the control of segmental identity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aya Mikdache ◽  
Marie-José Boueid ◽  
Lorijn van der Spek ◽  
Emilie Lesport ◽  
Brigitte Delespierre ◽  
...  

AbstractThe Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.


2013 ◽  
Vol 27 (12) ◽  
pp. 2041-2054 ◽  
Author(s):  
Xilong Li ◽  
Michael J. Large ◽  
Chad J. Creighton ◽  
Rainer B. Lanz ◽  
Jae-Wook Jeong ◽  
...  

Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII; NR2F2) is an orphan nuclear receptor involved in cell-fate specification, organogenesis, angiogenesis, and metabolism. Ablation of COUP-TFII in the mouse uterus causes infertility due to defects in embryo attachment and impaired uterine stromal cell decidualization. Although the function of COUP-TFII in uterine decidualization has been described in mice, its role in the human uterus remains unknown. We observed that, as in mice, COUP-TFII is robustly expressed in the endometrial stroma of healthy women, and its expression is reduced in the ectopic lesions of women with endometriosis. To interrogate the role of COUP-TFII in human endometrial function, we used a small interfering RNA-mediated loss of function approach in primary human endometrial stromal cells. Attenuation of COUP-TFII expression did not completely block decidualization; rather it had a selective effect on gene expression. To better elucidate the role of COUP-TFII in endometrial stroma cell biology, the COUP-TFII transcriptome was defined by pairing microarray comparison with chromatin immunoprecipitation followed by deep sequencing. Gene ontology analysis demonstrates that COUP-TFII regulates a subset of genes in endometrial stroma cell decidualization such as those involved in cell adhesion, angiogenesis, and inflammation. Importantly this analysis shows that COUP-TFII plays a role in controlling the expression of inflammatory cytokines. The determination that COUP-TFII plays a role in inflammation may add insight into the role of COUP-TFII in embryo implantation and in endometrial diseases such as endometriosis.


1996 ◽  
Vol 25 ◽  
pp. S2
Author(s):  
Hideyuki Okano ◽  
Kazunobu Sawamoto ◽  
Masataka Okabe ◽  
Takao Imai ◽  
Shin-Ichi Sakakibara ◽  
...  

Development ◽  
2000 ◽  
Vol 127 (23) ◽  
pp. 5157-5165 ◽  
Author(s):  
T. Vernoux ◽  
J. Kronenberger ◽  
O. Grandjean ◽  
P. Laufs ◽  
J. Traas

The process of organ positioning has been addressed, using the pin-formed 1 (pin1) mutant as a tool. PIN1 is a transmembrane protein involved in auxin transport in Arabidopsis. Loss of function severely affects organ initiation, and pin1 mutants are characterised by an inflorescence meristem that does not initiate any flowers, resulting in the formation of a naked inflorescence stem. This phenotype, combined with the proposed role of PIN1 in hormone transport, makes the mutant an ideal tool to study organ formation and phyllotaxis, and here we present a detailed analysis of the molecular modifications at the shoot apex caused by the mutation. We show that meristem structure and function are not severely affected in the mutant. Major alterations, however, are observed at the periphery of the pin1 meristem, where organ initiation should occur. Although two very early markers of organ initiation, LEAFY and AINTEGUMENTA, are expressed at the periphery of the mutant meristem, the cells are not recruited into distinct primordia. Instead a ring-like domain expressing those primordium specific genes is observed around the meristem. This ring-like domain also expresses a boundary marker, CUP-SHAPED COTYLEDON 2, involved in organ separation, showing that the zone at the meristem periphery has a hybrid identity. This implies that PIN1 is not only involved in organ outgrowth, but that it is also necessary for organ separation and positioning. A model is presented in which PIN1 and the local distribution of auxin control phyllotaxis.


Author(s):  
Sha Sumei ◽  
Kong Xiangyun ◽  
Chen Fenrong ◽  
Sun Xueguang ◽  
Hu Sijun ◽  
...  

Background/AimsThe role of DHRS3 in human cancer remains unclear. Our study explored the role of DHRS3 in gastric cancer (GC) and its clinicopathological significance and associated mechanisms.MaterialsBisulfite-assisted genomic sequencing PCR and a Mass-Array system were used to evaluate and quantify the methylation levels of the promoter. The expression levels and biological function of DHRS3 was examined by both in vitro and in vivo assays. A two-way hierarchical cluster analysis was used to classify the methylation profiles, and the correlation between the methylation status of the DHRS3 promoter and the clinicopathological characteristics of GC were then assessed.ResultsThe DHRS3 promoter was hypermethylated in GC samples, while the mRNA and protein levels of DHRS3 were significantly downregulated. Ectopic expression of DHRS3 in GC cells inhibited cell proliferation and migration in vitro, decreased tumor growth in vivo. DHRS3 methylation was correlated with histological type and poor differentiation of tumors. GC patients with high degrees of CpG 9.10 methylation had shorter survival times than those with lower methylation.ConclusionDHRS3 was hypermethylated and downregulated in GC patients. Reduced expression of DHRS3 is implicated in gastric carcinogenesis, which suggests DHRS3 is a tumor suppressor.


2011 ◽  
Vol 195 (4) ◽  
pp. 553-562 ◽  
Author(s):  
Ana Carmena ◽  
Aljona Makarova ◽  
Stephan Speicher

A crucial first step in asymmetric cell division is to establish an axis of cell polarity along which the mitotic spindle aligns. Drosophila melanogaster neural stem cells, called neuroblasts (NBs), divide asymmetrically through intrinsic polarity cues, which regulate spindle orientation and cortical polarity. In this paper, we show that the Ras-like small guanosine triphosphatase Rap1 signals through the Ral guanine nucleotide exchange factor Rgl and the PDZ protein Canoe (Cno; AF-6/Afadin in vertebrates) to modulate the NB division axis and its apicobasal cortical polarity. Rap1 is slightly enriched at the apical pole of metaphase/anaphase NBs and was found in a complex with atypical protein kinase C and Par6 in vivo. Loss of function and gain of function of Rap1, Rgl, and Ral proteins disrupt the mitotic axis orientation, the localization of Cno and Mushroom body defect, and the localization of cell fate determinants. We propose that the Rap1–Rgl–Ral signaling network is a novel mechanism that cooperates with other intrinsic polarity cues to modulate asymmetric NB division.


2010 ◽  
Vol 30 (11) ◽  
pp. 2837-2848 ◽  
Author(s):  
Vanessa Gobert ◽  
Dani Osman ◽  
Stéphanie Bras ◽  
Benoit Augé ◽  
Muriel Boube ◽  
...  

ABSTRACT Transcription factors of the RUNX and GATA families play key roles in the control of cell fate choice and differentiation, notably in the hematopoietic system. During Drosophila hematopoiesis, the RUNX factor Lozenge and the GATA factor Serpent cooperate to induce crystal cell differentiation. We used Serpent/Lozenge-activated transcription as a paradigm to identify modulators of GATA/RUNX activity by a genome-wide RNA interference screen in cultured Drosophila blood cells. Among the 129 factors identified, several belong to the Mediator complex. Mediator is organized in three modules plus a regulatory “CDK8 module,” composed of Med12, Med13, CycC, and Cdk8, which has long been thought to behave as a single functional entity. Interestingly, our data demonstrate that Med12 and Med13 but not CycC or Cdk8 are essential for Serpent/Lozenge-induced transactivation in cell culture. Furthermore, our in vivo analysis of crystal cell development show that, while the four CDK8 module subunits control the emergence and the proliferation of this lineage, only Med12 and Med13 regulate its differentiation. We thus propose that Med12/Med13 acts as a coactivator for Serpent/Lozenge during crystal cell differentiation independently of CycC/Cdk8. More generally, we suggest that the set of conserved factors identified herein may regulate GATA/RUNX activity in mammals.


Development ◽  
2000 ◽  
Vol 127 (16) ◽  
pp. 3619-3629 ◽  
Author(s):  
U. Weber ◽  
N. Paricio ◽  
M. Mlodzik

Jun acts as a signal-regulated transcription factor in many cellular decisions, ranging from stress response to proliferation control and cell fate induction. Genetic interaction studies have suggested that Jun and JNK signaling are involved in Frizzled (Fz)-mediated planar polarity generation in the Drosophila eye. However, simple loss-of-function analysis of JNK signaling components did not show comparable planar polarity defects. To address the role of Jun and JNK in Fz signaling, we have used a combination of loss- and gain-of-function studies. Like Fz, Jun affects the bias between the R3/R4 photoreceptor pair that is critical for ommatidial polarity establishment. Detailed analysis of jun(−) clones reveals defects in R3 induction and planar polarity determination, whereas gain of Jun function induces the R3 fate and associated polarity phenotypes. We find also that affecting the levels of JNK signaling by either reduction or overexpression leads to planar polarity defects. Similarly, hypomorphic allelic combinations and overexpression of the negative JNK regulator Puckered causes planar polarity eye phenotypes, establishing that JNK acts in planar polarity signaling. The observation that Dl transcription in the early R3/R4 precursor cells is deregulated by Jun or Hep/JNKK activation, reminiscent of the effects seen with Fz overexpression, suggests that Jun is one of the transcription factors that mediates the effects of fz in planar polarity generation.


Sign in / Sign up

Export Citation Format

Share Document