The distribution of endogenous retinoic acid in the chick embryo: implications for developmental mechanisms

Development ◽  
1998 ◽  
Vol 125 (21) ◽  
pp. 4133-4144 ◽  
Author(s):  
M. Maden ◽  
E. Sonneveld ◽  
P.T. van der Saag ◽  
E. Gale

The aim of these experiments was to determine the endogenous distribution of retinoic acid (RA) across a wide range of embryonic stages in the chick embryo. By high pressure liquid chromatography, it was revealed that didehydroRA is the most prevalent retinoic acid in the chick embryo and that the tissues of the stage 24 embryo differed widely in their total RA content (didehydroRA + all-trans-RA). Some tissues such as the heart had very little RA and some such as the neural tube had very high levels, the total variation between these two being 29-fold. We showed that these tissues also synthesised RA and released it into the medium, thus validating the use of the F9 reporter cell system for further analyses of younger staged embryos. With these F9 cells, we showed that, at stage 4, the posterior end of the embryo had barely detectably higher levels of RA than the anterior end, but that a significant level of RA generation was detected as soon as somitogenesis began. Then a sharp on/off boundary of RA was present at the level of the first somite. We could find no evidence for a posterior-to-anterior gradient of RA. Throughout further development, various consistent observations were made: the developing brain did not generate RA, but the spinal part of the neural tube generated it at very high levels so there must be a sharp on/off boundary in the region of the hindbrain/spinal cord junction; the mesenchyme surrounding the hindbrain generated RA whereas the hindbrain itself did not; there was a variation in RA levels from the midline outwards with the highest levels of RA in the spinal neural tube followed by lower levels in the somites followed by lower levels in the lateral plate; the posterior half of the limb bud generated higher levels than the anterior half. With these observations, we were able to draw maps of endogenous RA throughout these early stages of chick embryogenesis and the developmental implications of these results are discussed.

Development ◽  
1989 ◽  
Vol 107 (Supplement) ◽  
pp. 109-119 ◽  
Author(s):  
M. Maden ◽  
D. E. Ong ◽  
D. Summerbell ◽  
F. Chytil

We summarise existing data and describe new information on the levels and distribution of cellular retinoic acid-binding protein (CRABP) and cellular retinolbinding protein (CRBP) in the regenerating axolotl limb, the developing chick limb bud and the nervous system of the chick embryo in the light of the known morphogenetic effects of retinoids on these systems. In the regenerating limb, levels of CRABP rise 3- to 4-fold during regeneration, peaking at the time when retinoic acid (RA) is most effective at causing pattern duplications. The levels of CRBP are low. The potency of various retinoids in causing pattern respecification correlates well with the ability of these compounds to bind to CRABP. In the chick limb bud, the levels of CRABP are high and the levels of CRBP are low. Again the binding of various retinoids to CRABP correlates well with their ability to cause pattern duplications. By immunocytochemistry, we show that CRABP is present at high levels in the progress zone of the limb bud and is distributed across the anteroposterior axis in a gradient with the high point at the anterior margin. In the chick embryo, CRABP levels are high and CRBP levels are low. By immunocytochemistry, CRABP is localised primarily to the developing nervous system, labelling cells and axons in the mantle layer of the neural tube. These become the neurons of the commissural system. Also sensory axons label intensely with CRABP whereas motor axons do not and in the mixed nerves at the brachial plexus sensory and motor components can be distinguished on this basis. In the neural tube, CRBP only stains the ventral floor plate. Since the ventral floor plate may be a source of chemoattractant for commissural axons, we suggest on the basis of these staining patterns that RA may fulfill this role and thus be involved morphogenetically in the developing nervous system.


Development ◽  
1980 ◽  
Vol 59 (1) ◽  
pp. 71-87
Author(s):  
Trent D. Stephens ◽  
N. S. Vasan ◽  
James W. Lash

Little is known at the present time about the molecular basis and mechanisms of morphogenesis. The present study is an attempt to determine what influence the extracellular matrix has on the initial outgrowth of the limb bud. Stage -12 to -18 chick embryo lateral plates were examined in relation to proline and sulfate incorporation into collagen and proteoglycan. The flank and limbs incorporated the same amount of labeled proline and sulfate before stage 16. At stage 16 the flank began to incorporate more of both isotopes until at stage 18 there was twice as much incorporation into the flank as into the limbs. The flank and limbs contained the same type of collagen during the period examined. The limbs contained both large and small proteoglycans but the flank contained only small proteoglycans. These data suggest that the extracellular matrix in the flank and limb regions may play a role in limb outgrowth and that the limb buds at these stages may be more inclined toward cartilage development.


Development ◽  
1992 ◽  
Vol 114 (4) ◽  
pp. 841-852 ◽  
Author(s):  
O. Sundin ◽  
G. Eichele

Chick Ghox 2.9 protein, a homeodomain-containing polypeptide, is first detected in the mid-gastrula stage embryo and its levels increase rapidly in the late gastrula. At this time, the initially narrow band of expression along the primitive streak expands laterally to form a shield-like domain that encompasses almost the entire posterior region of the embryo and extends anteriorly as far as Hensen's node. We have found that this expression domain co-localizes with a morphological feature that consists of a stratum of refractile, thickened mesoderm. Antibody-staining indicates that Ghox 2.9 protein is present in all cells of this mesodermal region. In contrast, expression within the ectoderm overlying the region of refractile mesoderm varies considerably. The highest levels of expression are found in ectoderm near the streak and surrounding Hensen's node, regions that recent fate mapping studies suggest that primarily destined to give rise to neurectoderm. At the definitive streak stage (Hamburger and Hamilton stage 4) the chick embryo is especially sensitive to the induction of axial malformations by retinoic acid. Four hours after the treatment of definitive streak embryos with a pulse of retinoic acid the expression of Ghox 2.9 protein is greatly elevated. This ectopic expression occurs in tissues anterior to Hensen's node, including floor plate, notochord, presumptive neural plate and lateral plate mesoderm, but does not occur in the anteriormost region of the embryo. The ectopic induction of Ghox 2.9 is strongest in ectoderm, and weaker in the underlying mesoderm. Endoderm throughout the embryo is unresponsive. At stage 11, Ghox 2.9 is normally expressed at high levels within rhombomere 4 of the developing hindbrain. In retinoic-acid-treated embryos which have developed to this stage, typical rhombomere boundaries are largely absent. Nevertheless, Ghox 2.9 is still expressed as a discrete band, but one that is widened and displaced to a more anterior position.


1969 ◽  
Vol 23 (4) ◽  
pp. 899-904 ◽  
Author(s):  
B. Morgan ◽  
J. N. Thompson ◽  
G. A. J. Pitt

1. Fertile eggs deficient in vitamin A were obtained by feeding hens a diet deficient in retinol (vitamin A alcohol) but containing methyl retinoate.2. Radioactive retinol was injected into the albumen of three of these eggs at a level of 2 μg [6,7-14C]retinol/egg. After 5 days' incubation, 4.6–8.3% of the injected material was recovered in the lipid of the embryo, representing a four- to nine-fold concentration into the embryo from the albumen. Approximately 40–50% of this was unchanged retinol, 15–20% retin-aldehyde and 20–30% probably a long-chain fatty acid retinyl ester. The early embryo can, therefore, metabolize vitamin A very effectively.3. [6,7-14C]Retinoic acid (2 μg) was injected into normal fertile eggs, killing most of the embryos. The eggs with dead embryos were analysed; 0.24% and 0.33% of the injected material was recovered from the embryos. Two embryos which developed contained 0.51% and 0.53% of the injected dose. In no instance was any material identified other than retinoic acid. The extremely low amounts of retinoic acid absorbed by the embryos emphasize the very high toxicity of retinoic acid to the early chick embryo.4. [6,7-14C]Methyl retinoate (0.5 μg) was injected into each of four normal eggs; 8.5–11.6% was isolated as unchanged methyl retinoate after 5 days; no other radioactive substance was detected.


Development ◽  
1971 ◽  
Vol 25 (1) ◽  
pp. 97-113
Author(s):  
Glenn C. Rosenquist

The origin of the prehepatic cells was determined by tracing the movements of [3H]thymidine-labelled grafts excised from medium-streak to 4-somite stage chick embryos and transplanted to the epiblast, streak and endoderm-mesoderm layer of similarly staged recipient embryos. Although exact definition of prehepatic areas was not possible because of the small number of grafts placed at each developmental stage, the study showed in general that at the medium-streak stage, the prehepatic endoderm cells are in the anterior third of the primitive streak; they shortly begin to migrate anteriorly and laterally into the endoderm layer ventral to the precardiac areas of mesoderm. They are in the yolk-sac endoderm at the 2–4-somite stage, and by the 15–17-somite stage are clustered at the anterior intestinal portal. At the 26-somite to early limb-bud stages, the anterior and posterior liver diverticula have formed from these endoderm cells, and some of the branches of the diverticula may have reached the prehepatic mesenchyme, where the two tissues have begun to form cords and sinuses. At the medium-streak stage, the prehepatic mesoderm is located slightly more than halfway from the anterior to the posterior end of the primitive streak. From this position it migrates anteriorly and laterally into the lateral plate mesoderm, and from the head-process to the 2–4-somite stage it is situated posterior to the prehepatic endoderm and posterior and lateral to the heart-forming portion of the splanchnic layer. By the 15–17-somite stage the prehepatic mesoderm has reached a position in the splanchnic layer of mesoderm which forms the dorsolateral wall of the sinus venosus. By the 26-somite to early limb-bud stage the hepatic diverticula have joined with the hepatic mesenchyme to form the rudimentary cords and sinuses of the liver.


Development ◽  
1988 ◽  
Vol 104 (Supplement) ◽  
pp. 231-244 ◽  
Author(s):  
Claudio D. Stern ◽  
Scott E. Fraser ◽  
Roger J. Keynes ◽  
Dennis R. N. Primmett

We have studied the lineage history of the progenitors of the somite mesoderm and of the neural tube in the chick embryo by injecting single cells with the fluorescent tracer, rhodamine-lysine-dextran. We find that, although single cells within the segmental plate give rise to discrete clones in the somites to which they contribute, neither the somites nor their component parts (sclerotome, dermatome, myotome or their rostral and caudal halves) are `compartments' in the sense defined in insects. Cells in the rostral two thirds or so of the segmental plate contribute only to somite tissue and divide about every 10 h, while those in the caudal portions of this structure contribute both to the somites and to intermediate and lateral plate mesoderm derivatives. In the neural tube, the descendants of individual prospective ventral horn cells remain together within the horn, with a cycle time of 10 h. We have also investigated the role of the cell division cycle in the formation and subsequent development of somites. A single treatment of 2-day chick embryos with heat shock or a variety of drugs that affect the cell cycle all produce repeated anomalies in the pattern of somites and vertebrae that develop subsequent to the treatment. The interval between anomalies is 6-7 somites (or a multiple of this distance), which corresponds to 10 h. This interval is identical to that measured for the cell division cycle. Given that cell division synchrony is seen in the presomitic mesoderm, we suggest that the cell division cycle plays a role in somite formation. Finally, we consider the mechanisms responsible for regionalization of derivatives of the somite, and conclude that it is likely that both cell interactions and cell lineage history are important in the determination of cell fates.


Author(s):  
Gerald B. Feldewerth

In recent years an increasing emphasis has been placed on the study of high temperature intermetallic compounds for possible aerospace applications. One group of interest is the B2 aiuminides. This group of intermetaliics has a very high melting temperature, good high temperature, and excellent specific strength. These qualities make it a candidate for applications such as turbine engines. The B2 aiuminides exist over a wide range of compositions and also have a large solubility for third element substitutional additions, which may allow alloying additions to overcome their major drawback, their brittle nature.One B2 aluminide currently being studied is cobalt aluminide. Optical microscopy of CoAl alloys produced at the University of Missouri-Rolla showed a dramatic decrease in the grain size which affects the yield strength and flow stress of long range ordered alloys, and a change in the grain shape with the addition of 0.5 % boron.


2004 ◽  
pp. 21-29
Author(s):  
G.V. Pyrog

In domestic scientific and public opinion, interest in religion as a new worldview paradigm is very high. Today's attention to the Christian religion in our society is connected, in our opinion, with the specificity of its value system, which distinguishes it from other forms of consciousness: the idea of ​​God, the absolute, the eternity of moral norms. That is why its historical forms do not receive accurate characteristics and do not matter in the mass consciousness. Modern religious beliefs do not always arise as a result of the direct influence of church preaching. The emerging religious values ​​are absorbed in a wide range of philosophical, artistic, ethical ideas, acting as a compensation for what is generally defined as spirituality. At the same time, the appeal to Christian values ​​became very popular.


Alloy Digest ◽  
1993 ◽  
Vol 42 (2) ◽  

Abstract Durcomet 100 is an improved version of Alloy CD-4 MCu with better corrosion and wear resistance. The alloy is used in the annealed condition and possesses excellent corrosion resistance over a wide range of corrosion environments. Mechanical strength is also very high. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating and joining. Filing Code: SS-540. Producer or source: Duriron Company Inc.


Sign in / Sign up

Export Citation Format

Share Document