Prospero distinguishes sibling cell fate without asymmetric localization in the Drosophila adult external sense organ lineage

Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2063-2071 ◽  
Author(s):  
L. Manning ◽  
C.Q. Doe

The adult external sense organ precursor (SOP) lineage is a model system for studying asymmetric cell division. Adult SOPs divide asymmetrically to produce IIa and IIb daughter cells; IIa generates the external socket (tormogen) and hair (trichogen) cells, while IIb generates the internal neuron and sheath (thecogen) cells. Here we investigate the expression and function of prospero in the adult SOP lineage. Although Prospero is asymmetrically localized in embryonic SOP lineage, this is not observed in the adult SOP lineage: Prospero is first detected in the IIb nucleus and, during IIb division, it is cytoplasmic and inherited by both neuron and sheath cells. Subsequently, Prospero is downregulated in the neuron but maintained in the sheath cell. Loss of prospero function leads to ‘double bristle’ sense organs (reflecting a IIb-to-IIa transformation) or ‘single bristle’ sense organs with abnormal neuronal differentiation (reflecting defective IIb development). Conversely, ectopic prospero expression results in duplicate neurons and sheath cells and a complete absence of hair/socket cells (reflecting a IIa-to-IIb transformation). We conclude that (1) despite the absence of asymmetric protein localization, prospero expression is restricted to the IIb cell but not its IIa sibling, (2) prospero promotes IIb cell fate and inhibits IIa cell fate, and (3) prospero is required for proper axon and dendrite morphology of the neuron derived from the IIb cell. Thus, prospero plays a fundamental role in establishing binary IIa/IIb sibling cell fates without being asymmetrically localized during SOP division. Finally, in contrast to previous studies, we find that the IIb cell divides prior to the IIa cell in the SOP lineage.

Blood ◽  
2021 ◽  
Author(s):  
Dirk Loeffler ◽  
Florin Schneiter ◽  
Weijia Wang ◽  
Arne Wehling ◽  
Tobias Kull ◽  
...  

Understanding human hematopoietic stem cell fate control is important for their improved therapeutic manipulation. Asymmetric cell division, the asymmetric inheritance of factors during division instructing future daughter cell fates, was recently described in mouse blood stem cells. In human blood stem cells, the possible existence of asymmetric cell division remained unclear due to technical challenges in its direct observation. Here, we use long-term quantitative single-cell imaging to show that lysosomes and active mitochondria are asymmetrically inherited in human blood stem cells and that their inheritance is a coordinated, non-random process. Furthermore, multiple additional organelles, including autophagosomes, mitophagosomes, autolysosomes and recycling endosomes show preferential asymmetric co-segregation with lysosomes. Importantly, asymmetric lysosomal inheritance predicts future asymmetric daughter cell cycle length, differentiation and stem cell marker expression, while asymmetric inheritance of active mitochondria correlates with daughter metabolic activity. Hence, human hematopoietic stem cell fates are regulated by asymmetric cell division, with both mechanistic evolutionary conservation and differences to the mouse system.


Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2083-2092 ◽  
Author(s):  
G.V. Reddy ◽  
V. Rodrigues

Specification of cell fate in the adult sensory organs is known to be dependent on intrinsic and extrinsic signals. We show that the homeodomain transcription factor Prospero (Pros) acts as an intrinsic signal for the specification of cell fates within the mechanosensory lineage. The sensory organ precursors divide to give rise to two secondary progenitors - PIIa and PIIb. Pros is expressed in PIIb, which gives rise to the neuron and thecogen cells. Loss of Pros function affects the identity of PIIb and neurons fail to differentiate. Pros misexpression is sufficient for the transformation of PIIa to PIIb fate. The expression of Pros in the normal PIIb cell appears to be regulated by Notch signaling.


2013 ◽  
Vol 201 (3) ◽  
pp. 439-448 ◽  
Author(s):  
Alok Upadhyay ◽  
Vasundhara Kandachar ◽  
Diana Zitserman ◽  
Xin Tong ◽  
Fabrice Roegiers

In Drosophila peripheral neurogenesis, Notch controls cell fates in sensory organ precursor (SOP) cells. SOPs undergo asymmetric cell division by segregating Numb, which inhibits Notch signaling, into the pIIb daughter cell after cytokinesis. In contrast, in the pIIa daughter cell, Notch is activated and requires Sanpodo, but its mechanism of action has not been elucidated. As Sanpodo is present in both pIIa and pIIb cells, a second role for Sanpodo in regulating Notch signaling in the low-Notch pIIb cell has been proposed. Here we demonstrate that Sanpodo regulates Notch signaling levels in both pIIa and pIIb cells via distinct mechanisms. The interaction of Sanpodo with Presenilin, a component of the γ-secretase complex, was required for Notch activation and pIIa cell fate. In contrast, Sanpodo suppresses Notch signaling in the pIIb cell by driving Notch receptor internalization. Together, these results demonstrate that a single protein can regulate Notch signaling through distinct mechanisms to either promote or suppress signaling depending on the local cellular context.


2000 ◽  
Vol 20 (14) ◽  
pp. 5087-5095 ◽  
Author(s):  
Kirugaval Hemavathy ◽  
Siradanahalli C. Guru ◽  
John Harris ◽  
J. Don Chen ◽  
Y. Tony Ip

ABSTRACT Snail/Slug family proteins have been identified in diverse species of both vertebrates and invertebrates. The proteins contain four to six zinc fingers and function as DNA-binding transcriptional regulators. Various members of the family have been demonstrated to regulate cell movement, neural cell fate, left-right asymmetry, cell cycle, and apoptosis. However, the molecular mechanisms of how these regulators function and the target genes involved are largely unknown. In this report, we demonstrate that human Slug (hSlug) is a repressor and modulates both activator-dependent and basal transcription. The repression depends on the C-terminal DNA-binding zinc fingers and on a separable repression domain located in the N terminus. This domain may recruit histone deacetylases to modify the chromatin and effect repression. Protein localization study demonstrates that hSlug is present in discrete foci in the nucleus. This subnuclear pattern does not colocalize with the PML foci or the coiled bodies. Instead, the hSlug foci overlap extensively with areas of the SC-35 staining, some of which have been suggested to be sites of active splicing or transcription. These results lead us to postulate that hSlug localizes to target promoters, where activation occurs, to repress basal and activator-mediated transcription.


2020 ◽  
Vol 64 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Ben L. Carty ◽  
Elaine M. Dunleavy

Abstract Asymmetric cell division (ACD) produces daughter cells with separate distinct cell fates and is critical for the development and regulation of multicellular organisms. Epigenetic mechanisms are key players in cell fate determination. Centromeres, epigenetically specified loci defined by the presence of the histone H3-variant, centromere protein A (CENP-A), are essential for chromosome segregation at cell division. ACDs in stem cells and in oocyte meiosis have been proposed to be reliant on centromere integrity for the regulation of the non-random segregation of chromosomes. It has recently been shown that CENP-A is asymmetrically distributed between the centromeres of sister chromatids in male and female Drosophila germline stem cells (GSCs), with more CENP-A on sister chromatids to be segregated to the GSC. This imbalance in centromere strength correlates with the temporal and asymmetric assembly of the mitotic spindle and potentially orientates the cell to allow for biased sister chromatid retention in stem cells. In this essay, we discuss the recent evidence for asymmetric sister centromeres in stem cells. Thereafter, we discuss mechanistic avenues to establish this sister centromere asymmetry and how it ultimately might influence cell fate.


Author(s):  
Karolina Punovuori ◽  
Mattias Malaguti ◽  
Sally Lowell

AbstractDuring early neural development, changes in signalling inform the expression of transcription factors that in turn instruct changes in cell identity. At the same time, switches in adhesion molecule expression result in cellular rearrangements that define the morphology of the emerging neural tube. It is becoming increasingly clear that these two processes influence each other; adhesion molecules do not simply operate downstream of or in parallel with changes in cell identity but rather actively feed into cell fate decisions. Why are differentiation and adhesion so tightly linked? It is now over 60 years since Conrad Waddington noted the remarkable "Constancy of the Wild Type” (Waddington in Nature 183: 1654–1655, 1959) yet we still do not fully understand the mechanisms that make development so reproducible. Conversely, we do not understand why directed differentiation of cells in a dish is sometimes unpredictable and difficult to control. It has long been suggested that cells make decisions as 'local cooperatives' rather than as individuals (Gurdon in Nature 336: 772–774, 1988; Lander in Cell 144: 955–969, 2011). Given that the cadherin family of adhesion molecules can simultaneously influence morphogenesis and signalling, it is tempting to speculate that they may help coordinate cell fate decisions between neighbouring cells in the embryo to ensure fidelity of patterning, and that the uncoupling of these processes in a culture dish might underlie some of the problems with controlling cell fate decisions ex-vivo. Here we review the expression and function of cadherins during early neural development and discuss how and why they might modulate signalling and differentiation as neural tissues are formed.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1491-1505
Author(s):  
D F Lyman ◽  
B Yedvobnick

Abstract The neurogenic Notch locus of Drosophila encodes a receptor necessary for cell fate decisions within equivalence groups, such as proneural clusters. Specification of alternate fates within clusters results from inhibitory communication among cells having comparable neural fate potential. Genetically, Hairless (H) acts as an antagonist of most neurogenic genes and may insulate neural precursor cells from inhibition. H function is required for commitment to the bristle sensory organ precursor (SOP) cell fate and for daughter cell fates. Using Notch gain-of-function alleles and conditional expression of an activated Notch transgene, we show that enhanced signaling produces H-like loss-of-function phenotypes by suppressing bristle SOP cell specification or by causing an H-like transformation of sensillum daughter cell fates. Furthermore, adults carrying Notch gain of function and H alleles exhibit synergistic enhancement of mutant phenotypes. Over-expression of an H+ transgene product suppressed virtually all phenotypes generated by Notch gain-of-function genotypes. Phenotypes resulting from over-expression of the H+ transgene were blocked by the Notch gain-of-function products, indicating a balance between Notch and H activity. The results suggest that H insulates SOP cells from inhibition and indicate that H activity is suppressed by Notch signaling.


Sign in / Sign up

Export Citation Format

Share Document