The genetics of cell migration in Drosophila melanogaster and Caenorhabditis elegans development

Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3035-3046 ◽  
Author(s):  
D.J. Montell

Cell migrations are found throughout the animal kingdom and are among the most dramatic and complex of cellular behaviors. Historically, the mechanics of cell migration have been studied primarily in vitro, where cells can be readily viewed and manipulated. However, genetic approaches in relatively simple model organisms are yielding additional insights into the molecular mechanisms underlying cell movements and their regulation during development. This review will focus on these simple model systems where we understand some of the signaling and receptor molecules that stimulate and guide cell movements. The chemotactic guidance factor encoded by the Caenorhabditis elegans unc-6 locus, whose mammalian homolog is Netrin, is perhaps the best known of the cell migration guidance factors. In addition, receptor tyrosine kinases (RTKs), and FGF receptors in particular, have emerged as key mediators of cell migration in vivo, confirming the importance of molecules that were initially identified and studied in cell culture. Somewhat surprisingly, screens for mutations that affect primordial germ cell migration in Drosophila have revealed that enzymes involved in lipid metabolism play a role in guiding cell migration in vivo, possibly by producing and/or degrading lipid chemoattractants or chemorepellents. Cell adhesion molecules, such as integrins, have been extensively characterized with respect to their contribution to cell migration in vitro and genetic evidence now supports a role for these receptors in certain instances in vivo as well. The role for non-muscle myosin in cell motility was controversial, but has now been demonstrated genetically, at least in some cell types. Currently the best characterized link between membrane receptor signaling and regulation of the actin cytoskeleton is that provided by the Rho family of small GTPases. Members of this family are clearly essential for the migrations of some cells; however, key questions remain concerning how chemoattractant and chemorepellent signals are integrated within the cell and transduced to the cytoskeleton to produce directed cell migration. New types of genetic screens promise to fill in some of these gaps in the near future.

2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi215-vi216
Author(s):  
Melanie Schoof ◽  
Carolin Göbel ◽  
Dörthe Holdhof ◽  
Sina Al-Kershi ◽  
Ulrich Schüller

Abstract DNA methylation based classification of brain tumors has revealed a high heterogeneity between tumors and led to the description of multiple distinct subclasses. The increasing subdivision of tumors can help to understand molecular mechanisms of tumor development and to improve therapy if appropriate model systems for preclinical research are available. Multiple recent publications have described a subgroup of pediatric glioblastoma which is clearly separable from other pediatric and adult glioblastoma in its DNA methylation profile (GBM MYCN). Many cases in this group are driven by MYCN amplifications and harbor TP53 mutations. These tumors almost exclusively occur in children and were further described as highly aggressive with a median overall survival of only 14 months. In order to further investigate the biology and treatment options of these tumors, we generated hGFAP-cre::TP53 Fl/Fl ::lsl-MYCN mice. These mice carry a loss of TP53 and show aberrant MYCN expression in neural precursors of the central nervous system. The animals develop large forebrain tumors within the first 80 days of life with 100 % penetrance. These tumors resemble human GBM MYCN tumors histologically and are sensitive to AURKA and ATR inhibitors in vitro. We believe that further characterization of the model and in vivo treatment studies will pave the way to improve treatment of patients with these highly aggressive tumors.


2019 ◽  
Author(s):  
Luiza Da Cunha Stankevicins ◽  
Marta Urbanska ◽  
Daniel AD. Flormann ◽  
Emmanuel Terriac ◽  
Zahra Mostajeran ◽  
...  

AbstractDendritic cells use amoeboid migration through constricted passages to reach the lymph nodes, and this homing function is crucial for immune responses. Amoeboid migration requires mechanical resilience, however, the underlying molecular mechanisms for this type of migration remain unknown. Because vimentin intermediate filaments (IFs) and microfilaments regulate adhesion-dependent migration in a bidirectional manner, we analyzed if they exert a similar control on amoeboid migration. Vimentin was required for cellular resilience, via a joint interaction between vimentin IFs and F-actin. Reduced actin mobility in the cell cortex of vimentin-reduced cells indicated that vimentin promotes Factin subunit exchange and dynamics. These mechano-dynamic alterations in vimentin-deficient dendritic cells impaired amoeboid migration in confined environments in vitro and blocked lymph node homing in mouse experiments in vivo. Correct nuclear positioning is important in confined amoeboid migration both to minimize resistance and to avoid DNA damage. Vimentin-deficiency also led to DNA double strand breaks in the compressed dendritic cells, pointing to a role of vimentin in nuclear positioning. Together, these observations show that vimentin IF-microfilament interactions provide both the specific mechano-dynamics required for dendritic cell migration and the protection the genome needs in compressed spaces.Summary statementVimentin — in joint action with actin — mediates the mechanical stiffness of cells required for amoeboid cell migration through confined spaces and protects the nucleus from DNA damage.


2000 ◽  
Vol 151 (4) ◽  
pp. 763-778 ◽  
Author(s):  
Mark R. Frey ◽  
Jennifer A. Clark ◽  
Olga Leontieva ◽  
Joshua M. Uronis ◽  
Adrian R. Black ◽  
...  

Members of the protein kinase C (PKC) family of signal transduction molecules have been widely implicated in regulation of cell growth and differentiation, although the underlying molecular mechanisms involved remain poorly defined. Using combined in vitro and in vivo intestinal epithelial model systems, we demonstrate that PKC signaling can trigger a coordinated program of molecular events leading to cell cycle withdrawal into G0. PKC activation in the IEC-18 intestinal crypt cell line resulted in rapid downregulation of D-type cyclins and differential induction of p21waf1/cip1 and p27kip1, thus targeting all of the major G1/S cyclin-dependent kinase complexes. These events were associated with coordinated alterations in expression and phosphorylation of the pocket proteins p107, pRb, and p130 that drive cells to exit the cell cycle into G0 as indicated by concomitant downregulation of the DNA licensing factor cdc6. Manipulation of PKC isozyme levels in IEC-18 cells demonstrated that PKCα alone can trigger hallmark events of cell cycle withdrawal in intestinal epithelial cells. Notably, analysis of the developmental control of cell cycle regulatory molecules along the crypt–villus axis revealed that PKCα activation is appropriately positioned within intestinal crypts to trigger this program of cell cycle exit–specific events in situ. Together, these data point to PKCα as a key regulator of cell cycle withdrawal in the intestinal epithelium.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1523
Author(s):  
Isabelle Anna Zink ◽  
Erika Wimmer ◽  
Christa Schleper

Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1075 ◽  
Author(s):  
Panagiotis Tsakiroglou ◽  
Natalie E. VandenAkker ◽  
Cristian Del Bo’ ◽  
Patrizia Riso ◽  
Dorothy Klimis-Zacas

Cell migration is a critical process that is highly involved with normal and pathological conditions such as angiogenesis and wound healing. Important members of the RHO GTPase family are capable of controlling cytoskeleton conformation and altering motility characteristics of cells. There is a well-known relationship between small GTPases and the PI3K/AKT pathway. Endothelial cell migration can lead to angiogenesis, which is highly linked to wound healing processes. Phenolics, flavonoids, and anthocyanins are major groups of phytochemicals and are abundant in many natural products. Their antioxidant, antimicrobial, anti-inflammatory, antidiabetic, angiogenenic, neuroprotective, hepatoprotective, and cardioprotective properties have been extensively documented. This comprehensive review focuses on the in vitro and in vivo role of berry extracts and single anthocyanin and phenolic acid compounds on cell migration and angiogenesis. We aim to summarize the most recent published studies focusing on the experimental model, type of berry extract, source, dose/concentration and overall effect(s) of berry extracts, anthocyanins, and phenolic acids on the above processes.


Author(s):  
Timothy J. Hines ◽  
Cathleen Lutz ◽  
Stephen A. Murray ◽  
Robert W. Burgess

As sequencing technology improves, the identification of new disease-associated genes and new alleles of known genes is rapidly increasing our understanding of the genetic underpinnings of rare diseases, including neuromuscular diseases. However, precisely because these disorders are rare and often heterogeneous, they are difficult to study in patient populations. In parallel, our ability to engineer the genomes of model organisms, such as mice or rats, has gotten increasingly efficient through techniques such as CRISPR/Cas9 genome editing, allowing the creation of precision human disease models. Such in vivo model systems provide an efficient means for exploring disease mechanisms and identifying therapeutic strategies. Furthermore, animal models provide a platform for preclinical studies to test the efficacy of those strategies. Determining whether the same mechanisms are involved in the human disease and confirming relevant parameters for treatment ideally involves a human experimental system. One system currently being used is induced pluripotent stem cells (iPSCs), which can then be differentiated into the relevant cell type(s) for in vitro confirmation of disease mechanisms and variables such as target engagement. Here we provide a demonstration of these approaches using the example of tRNA-synthetase-associated inherited peripheral neuropathies, rare forms of Charcot-Marie-Tooth disease (CMT). Mouse models have led to a better understanding of both the genetic and cellular mechanisms underlying the disease. To determine if the mechanisms are similar in human cells, we will use genetically engineered iPSC-based models. This will allow comparisons of different CMT-associated GARS alleles in the same genetic background, reducing the variability found between patient samples and simplifying the availability of cell-based models for a rare disease. The necessity of integrating mouse and human models, strategies for accomplishing this integration, and the challenges of doing it at scale are discussed using recently published work detailing the cellular mechanisms underlying GARS-associated CMT as a framework.


2006 ◽  
Vol 17 (10) ◽  
pp. 4318-4329 ◽  
Author(s):  
Morten K. Larsen ◽  
Simon Tuck ◽  
Nils J. Færgeman ◽  
Jens Knudsen

The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydrolysis of acyl-CoA lipid esters. The mechanisms by which these lipid esters are directed to the appropriate membranes in vivo, and their precise roles in vesicle biogenesis, are not yet understood. Here, we present the first report on membrane associated ACBP domain-containing protein-1 (MAA-1), a novel membrane-associated member of the acyl-CoA–binding protein family. We show that in Caenorhabditis elegans, MAA-1 localizes to intracellular membrane organelles in the secretory and endocytic pathway and that mutations in maa-1 reduce the rate of endosomal recycling. A lack of maa-1 activity causes a change in endosomal morphology. Although in wild type, many endosomal organelles have long tubular protrusions, loss of MAA-1 activity results in loss of the tubular domains, suggesting the maa-1 is required for the generation or maintenance of these domains. Furthermore, we demonstrate that MAA-1 binds fatty acyl-CoA in vitro and that this ligand-binding ability is important for its function in vivo. Our results are consistent with a role for MAA-1 in an acyl-CoA–dependent process during vesicle formation.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Pang Yuk Cheung ◽  
Patrick T. Harrison ◽  
Alan J. Davidson ◽  
Jennifer A. Hollywood

The development over the past 50 years of a variety of cell lines and animal models has provided valuable tools to understand the pathophysiology of nephropathic cystinosis. Primary cultures from patient biopsies have been instrumental in determining the primary cause of cystine accumulation in the lysosomes. Immortalised cell lines have been established using different gene constructs and have revealed a wealth of knowledge concerning the molecular mechanisms that underlie cystinosis. More recently, the generation of induced pluripotent stem cells, kidney organoids and tubuloids have helped bridge the gap between in vitro and in vivo model systems. The development of genetically modified mice and rats have made it possible to explore the cystinotic phenotype in an in vivo setting. All of these models have helped shape our understanding of cystinosis and have led to the conclusion that cystine accumulation is not the only pathology that needs targeting in this multisystemic disease. This review provides an overview of the in vitro and in vivo models available to study cystinosis, how well they recapitulate the disease phenotype, and their limitations.


Development ◽  
1993 ◽  
Vol 119 (Supplement) ◽  
pp. 219-225 ◽  
Author(s):  
B. W. Kiernan ◽  
Charles ffrench-Constant

Cell migration plays an important role in the development of complex multicellular organisms. The molecular mechanisms that regulate this migration arc therefore of great interest. Unfortunately, however, analysis of cell migration in vertebrates is hampered by the inaccessability of the cells and the difficulty of manipulating their environment within the embryo. This review focusses on one particular migratory cell population, the oligodendrocyte p1ecursor cell or O-2A progenitor cell, that gives rise to the myelin-forming oligodendrocytes within the CNS. These cells mi grate extensively during normal development. They can be purified and grown in large numbers in cell culture, so allowing the use of reductionist approaches using cell and molecular biology techniques. Moreover, cultured cells will migrate within the CNS following transplantation. As a result, the migration of these cells in vivo can be analysed following manipulation in vitro. Taken together, we believe that the different properties of these cells makes them excellent candidates for studies addressing the control of cell migration in the developing nervous system.


Sign in / Sign up

Export Citation Format

Share Document