scholarly journals Positional cues specify and maintain aleurone cell fate in maize endosperm development

Development ◽  
2000 ◽  
Vol 127 (18) ◽  
pp. 4039-4048 ◽  
Author(s):  
P.W. Becraft ◽  
Y. Asuncion-Crabb

A genetic analysis of maize aleurone development was conducted. Cell lineage was examined by simultaneously marking cells with C1 for anthocyanin pigmentation in the aleurone and wx1 for amylose synthesis in the starchy endosperm. The aleurone and starchy endosperm share a common lineage throughout development indicating that positional cues specify aleurone fate. Mutants in dek1 block aleurone formation at an early stage and cause peripheral endosperm cells to develop as starchy endosperm. Revertant sectors of a transposon-induced dek1 allele showed that peripheral endosperm cells remain competent to differentiate as aleurone cells until late in development. Ds-induced chromosome breakage was used to generate Dek1 loss-of-function sectors. Events occurring until late development caused aleurone cells to switch fate to starchy endosperm indicating that cell fate is not fixed. Thus, positional cues are required to specify and maintain aleurone fate and Dek1 function is required to respond to these cues. An analysis of additional mutants that disrupt aleurone differentiation suggests a hierarchy of gene functions to specify aleurone cell fate and then control aleurone differentiation. These mutants disrupt aleurone differentiation in reproducible patterns suggesting a relationship to endosperm pattern formation.

Author(s):  
Francesca Pagani ◽  
Elisa Tratta ◽  
Patrizia Dell’Era ◽  
Manuela Cominelli ◽  
Pietro Luigi Poliani

AbstractEarly B-cell factor-1 (EBF1) is a transcription factor with an important role in cell lineage specification and commitment during the early stage of cell maturation. Originally described during B-cell maturation, EBF1 was subsequently identified as a crucial molecule for proper cell fate commitment of mesenchymal stem cells into adipocytes, osteoblasts and muscle cells. In vessels, EBF1 expression and function have never been documented. Our data indicate that EBF1 is highly expressed in peri-endothelial cells in both tumor vessels and in physiological conditions. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS) analysis suggest that EBF1-expressing peri-endothelial cells represent bona fide pericytes and selectively express well-recognized markers employed in the identification of the pericyte phenotype (SMA, PDGFRβ, CD146, NG2). This observation was also confirmed in vitro in human placenta-derived pericytes and in human brain vascular pericytes (HBVP). Of note, in accord with the key role of EBF1 in the cell lineage commitment of mesenchymal stem cells, EBF1-silenced HBVP cells showed a significant reduction in PDGFRβ and CD146, but not CD90, a marker mostly associated with a prominent mesenchymal phenotype. Moreover, the expression levels of VEGF, angiopoietin-1, NG2 and TGF-β, cytokines produced by pericytes during angiogenesis and linked to their differentiation and activation, were also significantly reduced. Overall, the data suggest a functional role of EBF1 in the cell fate commitment toward the pericyte phenotype.


Author(s):  
Fei Li ◽  
Qiuyue Yuan ◽  
Wei Di ◽  
Xinyi Xia ◽  
Zhuang Liu ◽  
...  

AbstractWhile cancer is commonly perceived as a disease of dedifferentiation, the hallmark of early stage prostate cancer is paradoxically the loss of more plastic basal cells and the abnormal proliferation of more differentiated secretory luminal cells. However, the mechanism of prostate cancer pro-luminal differentiation is largely unknown. Through integrating analysis of the transcription factors (TFs) from 806 human prostate cancers, we have identified that ERG highly correlated with prostate cancer luminal subtyping. ERG overexpression in luminal epithelial cells inhibits its normal plasticity to transdifferentiate into basal lineage and ERG supersedes PTEN-loss which favors basal differentiation. ERG knock-out disrupted prostate cell luminal differentiation, whereas AR knock-out had no such effects. Trp63 is a known master regulator of prostate basal lineage. Through analysis of 3D chromatin architecture, we found that ERG binds and inhibits the enhancer activity and chromatin looping of a Trp63 distal enhancer, thereby silencing its gene expression. Specific deletion of the distal ERG binding site resulted in the loss of ERG-mediated inhibition of basal differentiation. Thus, ERG orchestrates chromatin interactions and regulates prostate cell lineage toward pro-luminal program, as its fundamental role on lineage differentiation in prostate cancer initiation.


2019 ◽  
Author(s):  
Tim D.D. Somerville ◽  
Giulia Biffi ◽  
Juliane Daßler-Plenker ◽  
Koji Miyabayashi ◽  
Yali Xu ◽  
...  

AbstractA highly aggressive subset of pancreatic ductal adenocarcinomas undergo trans-differentiation into the squamous lineage during disease progression. While the tumorigenic consequences of this aberrant cell fate transition are poorly understood, recent studies have identified a role for the master regulator TP63 in this process. Here, we investigated whether squamous trans-differentiation of pancreatic cancer cells can influence the phenotype of non-neoplastic cells in the tumor microenvironment. Conditioned media experiments revealed that squamous-subtype pancreatic cancer cells secrete factors that convert quiescent pancreatic stellate cells into a specialized subtype of cancer-associated fibroblasts (CAFs) that express inflammatory genes at high levels. We use gain- and loss-of-function approaches in vivo to show that squamous-subtype pancreatic tumor models become enriched with inflammatory CAFs and neutrophils in a TP63-dependent manner. These non cell-autonomous effects occur, at least in part, through TP63-mediated activation of enhancers at pro-inflammatory cytokine loci, which includes IL1A as a key target. Taken together, our findings reveal enhanced tissue inflammation as a consequence of squamous trans-differentiation in pancreatic cancer, thus highlighting an instructive role of tumor cell lineage in reprogramming the stromal microenvironment.


2000 ◽  
Vol 191 (7) ◽  
pp. 1085-1094 ◽  
Author(s):  
Freddy Radtke ◽  
Isabel Ferrero ◽  
Anne Wilson ◽  
Rosemary Lees ◽  
Michel Aguet ◽  
...  

Thymic dendritic cells (DCs) form a discrete subset of bone marrow (BM)-derived cells, the function of which is to mediate negative selection of autoreactive thymocytes. The developmental origin of thymic DCs remains controversial. Although cell transfer studies support a model in which T cells and thymic DCs develop from the same intrathymic pluripotential precursor, it remains possible that these two types of cells develop from independent intrathymic precursors. Notch proteins are cell surface receptors involved in the regulation of cell fate specification. We have recently reported that T cell development in inducible Notch1-deficient mice is severely impaired at an early stage, before the expression of T cell lineage markers. To investigate whether development of thymic DCs also depends on Notch1, we have constructed mixed BM chimeric mice. We report here that thymic DC development from Notch1−/− BM precursors is absolutely normal (in terms of absolute number and phenotype) in this competitive situation, despite the absence of Notch1−/− T cells. Furthermore, we find that peripheral DCs and Langerhans cells are also not affected by Notch1 deficiency. Our results demonstrate that the development of DCs is totally independent of Notch1 function, and strongly suggest a dissociation between intrathymic T cell and DC precursors.


Genetics ◽  
2021 ◽  
Author(s):  
Yonghui He ◽  
Qing Yang ◽  
Jun Yang ◽  
Yong-Fei Wang ◽  
Xiaoliang Sun ◽  
...  

Abstract Minerals are stored in the aleurone layer and embryo during maize seed development, but how they affect endosperm development and activity is unclear. Here, we cloned the gene underlying the classic maize kernel mutant shrunken4 (sh4) and found that it encodes the YELLOW STRIPE-LIKE oligopeptide metal transporter ZmYSL2. sh4 kernels had a shrunken phenotype with developmental defects in the aleurone layer and starchy endosperm cells. ZmYSL2 showed iron and zinc transporter activity in Xenopus laevis oocytes. Analysis using a specific antibody indicated that ZmYSL2 predominately accumulated in the aleurone and sub-aleurone layers in endosperm and the scutellum in embryos. Specific iron deposition was observed in the aleurone layer in wild-type kernels. In sh4, however, the outermost monolayer of endosperm cells failed to accumulate iron and lost aleurone cell characteristics, indicating that proper functioning of ZmYSL2 and iron accumulation are essential for aleurone cell development. Transcriptome analysis of sh4 endosperm revealed that loss of ZmYSL2 function affects the expression of genes involved in starch synthesis and degradation processes, which is consistent with the delayed development and premature degradation of starch grains in sh4 kernels. Therefore, ZmYSL2 is critical for aleurone cell development and starchy endosperm cell activity during maize seed development.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3192
Author(s):  
Antoine Gleizes ◽  
Mouna Triki ◽  
Sandrine Bonnet ◽  
Naomi Baccari ◽  
Gabriel Jimenez-Dominguez ◽  
...  

RIP140 is a major transcriptional coregulator of gut homeostasis and tumorigenesis through the regulation of Wnt/APC signaling. Here, we investigated the effect of RIP140 on Paneth cell differentiation and its interplay with the transcription factor SOX9. Using loss of function mouse models, human colon cancer cells, and tumor microarray data sets we evaluated the role of RIP140 in SOX9 expression and activity using RT-qPCR, immunohistochemistry, luciferase reporter assays, and GST-pull down. We first evidence that RIP140 strongly represses the Paneth cell lineage in the intestinal epithelium cells by inhibiting Sox9 expression. We then demonstrate that RIP140 interacts with SOX9 and inhibits its transcriptional activity. Our results reveal that the Wnt signaling pathway exerts an opposite regulation on SOX9 and RIP140. Finally, the levels of expression of RIP140 and SOX9 exhibit a reverse response and prognosis value in human colorectal cancer biopsies. This work highlights an intimate transcriptional cross-talk between RIP140 and SOX9 in intestinal physiopathology.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1675-1695 ◽  
Author(s):  
Frans E Tax ◽  
James H Thomas ◽  
Edwin L Ferguson ◽  
H Robert Horvitzt

Abstract We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-l7, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup1 7 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup1 7and lag-2, suggest that both genes act at approximately the same time as lin-12in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.


Sign in / Sign up

Export Citation Format

Share Document