A requirement for Notch in the genesis of a subset of glial cells in the Drosophila embryonic central nervous system which arise through asymmetric divisions

Development ◽  
2001 ◽  
Vol 128 (8) ◽  
pp. 1457-1466 ◽  
Author(s):  
G. Udolph ◽  
P. Rath ◽  
W. Chia

In the Drosophila central nervous system (CNS) glial cells are known to be generated from glioblasts, which produce exclusively glia or neuroglioblasts that bifurcate to produce both neuronal and glial sublineages. We show that the genesis of a subset of glial cells, the subperineurial glia (SPGs), involves a new mechanism and requires Notch. We demonstrate that the SPGs share direct sibling relationships with neurones and are the products of asymmetric divisions. This mechanism of specifying glial cell fates within the CNS is novel and provides further insight into regulatory interactions leading to glial cell fate determination. Furthermore, we show that Notch signalling positively regulates glial cells missing (gcm) expression in the context of SPG development.

Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3735-3743 ◽  
Author(s):  
V. Van De Bor ◽  
R. Walther ◽  
A. Giangrande

In flies, the choice between neuronal and glial fates depends on the asymmetric division of multipotent precursors, the neuroglioblast of the central nervous system and the IIb precursor of the sensory organ lineage. In the central nervous system, the choice between the two fates requires asymmetric distribution of the glial cell deficient/glial cell missing (glide/gcm) RNA in the neuroglioblast. Preferential accumulation of the transcript in one of the daughter cells results in the activation of the glial fate in that cell, which becomes a glial precursor. Here we show that glide/gcm is necessary to induce glial differentiation in the peripheral nervous system. We also present evidence that glide/gcm RNA is not necessary to induce the fate choice in the peripheral multipotent precursor. Indeed, glide/gcm RNA and protein are first detected in one daughter of IIb but not in IIb itself. Thus, glide/gcm is required in both central and peripheral glial cells, but its regulation is context dependent. Strikingly, we have found that only subsets of sensory organs are gliogenic and express glide/gcm. The ability to produce glial cells depends on fixed, lineage related, cues and not on stochastic decisions. Finally, we show that after glide/gcm expression has ceased, the IIb daughter migrates and divides symmetrically to produce several mature glial cells. Thus, the glide/gcm-expressing cell, also called the fifth cell of the sensory organ, is indeed a glial precursor. This is the first reported case of symmetric division in the sensory organ lineage. These data indicate that the organization of the fly peripheral nervous system is more complex than previously thought.


Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 131-139 ◽  
Author(s):  
S. Vincent ◽  
J.L. Vonesch ◽  
A. Giangrande

Glial cells constitute the second component of the nervous system and are important during neuronal development. In this paper we describe a gene, glial cell deficient, (glide), that is necessary for glial cell fate commitment in Drosophila melanogaster. Mutations at the glide locus prevent glial cell determination in the embryonic central and peripheral nervous system. Moreover, we show that the absence of glial cells is the consequence of a cell fate switch from glia to neurones. This suggests the existence of a multipotent precursor cells in the nervous system. glide mutants also display defects in axonal navigation, which confirms and extends previous results indicating a role for glial cells in these processes.


2004 ◽  
Vol 7 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Christian Berger ◽  
S. K. Pallavi ◽  
Mohit Prasad ◽  
L. S. Shashidhara ◽  
Gerhard M. Technau

Author(s):  
Sarah A. Neely ◽  
David A. Lyons

The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.


1960 ◽  
Vol 37 (3) ◽  
pp. 500-512
Author(s):  
V. B. WIGGLESWORTH

1. The histology of the last abdominal ganglion and the cercal nerves and connectives of the cockroach are briefly described. Attention is called to the large cavities, termed the ‘glial lacunar system’, that are present in the glial cell layer of the ganglion; and to the branching filaments of collagen-like material which are laid down within the glial membranes and trabeculae of the ganglia and nerves. 2. Glycogen is stored in large amounts in the perineurium cells, and in small amounts in the interaxonal glial membranes in the neuropile and nerves. Invaginations of the plasma membrane of the large ganglion cells (the ‘trophospongium’) are apparently concerned in the transfer of glycogen. Invaginations and glycogen deposits increase progressively towards the base of the axon. 3. Very small amounts of triglycerides are stored in the ganglion. There are traces only in the perineurium cells; rather more in the glial cells. The invaginations of the glial cells into the large ganglion cells seem to be concerned also in the transfer of lipids to the neurones.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Sign in / Sign up

Export Citation Format

Share Document