scholarly journals Skeletal defects in VEGF120/120 mice reveal multiple roles for VEGF in skeletogenesis

Development ◽  
2002 ◽  
Vol 129 (8) ◽  
pp. 1893-1904 ◽  
Author(s):  
Elazar Zelzer ◽  
William McLean ◽  
Yin-Shan Ng ◽  
Naomi Fukai ◽  
Anthony M. Reginato ◽  
...  

Angiogenesis is an essential component of skeletal development and VEGF signaling plays an important if not pivotal role in this process. Previous attempts to examine the roles of VEGF in vivo have been largely unsuccessful because deletion of even one VEGF allele leads to embryonic lethality before skeletal development is initiated. The availability of mice expressing only the VEGF120 isoform (which do survive to term) has offered an opportunity to explore the function of VEGF during embryonic skeletal development. Our study of these mice provides new in vivo evidence for multiple important roles of VEGF in both endochondral and intramembranous bone formation, as well as some insights into isoform-specific functions. There are two key differences in vascularization of developing bones between wild-type and VEGF120/120 mice. VEGF120/120 mice have not only a delayed recruitment of blood vessels into the perichondrium but also show delayed invasion of vessels into the primary ossification center, demonstrating a significant role of VEGF at both an early and late stage of cartilage vascularization. These findings are the basis for a two-step model of VEGF-controlled vascularization of the developing skeleton, a hypothesis that is supported by the new finding that VEGF is expressed robustly in the perichondrium and surrounding tissue of cartilage templates of future bones well before blood vessels appear in these regions. We also describe new in vivo evidence for a possible role of VEGF in chondrocyte maturation, and document that VEGF has a direct role in regulating osteoblastic activity based on in vivo evidence and organ culture experiments.


Open Biology ◽  
2017 ◽  
Vol 7 (7) ◽  
pp. 170087 ◽  
Author(s):  
Yi Ting Tsai ◽  
Valentina Salzman ◽  
Matías Cabruja ◽  
Gabriela Gago ◽  
Hugo Gramajo

One of the dominant features of the biology of Mycobacterium tuberculosis , and other mycobacteria, is the mycobacterial cell envelope with its exceptional complex composition. Mycolic acids are major and very specific components of the cell envelope and play a key role in its architecture and impermeability. Biosynthesis of mycolic acid (MA) precursors requires two types of fatty acid synthases, FAS I and FAS II, which should work in concert in order to keep lipid homeostasis tightly regulated. Both FAS systems are regulated at their transcriptional level by specific regulatory proteins. FasR regulates components of the FAS I system, whereas MabR and FadR regulate components of the FAS II system. In this article, by constructing a tight mabR conditional mutant in Mycobacterium smegmatis mc 2 155, we demonstrated that sub-physiological levels of MabR lead to a downregulation of the fasII genes, inferring that this protein is a transcriptional activator of the FAS II system. In vivo labelling experiments and lipidomic studies carried out in the wild-type and the mabR conditional mutant demonstrated that under conditions of reduced levels of MabR, there is a clear inhibition of biosynthesis of MAs, with a concomitant change in their relative composition, and of other MA-containing molecules. These studies also demonstrated a change in the phospholipid composition of the membrane of the mutant strain, with a significant increase of phosphatidylinositol. Gel shift assays carried out with MabR and P fasII as a probe in the presence of different chain-length acyl-CoAs strongly suggest that molecules longer than C 18 can be sensed by MabR to modulate its affinity for the operator sequences that it recognizes, and in that way switch on or off the MabR-dependent promoter. Finally, we demonstrated the direct role of MabR in the upregulation of the fasII operon genes after isoniazid treatment.



Genetics ◽  
1988 ◽  
Vol 118 (4) ◽  
pp. 609-617
Author(s):  
M Winey ◽  
M R Culbertson

Abstract Two unlinked mutations that alter the enzyme activity of tRNA-splicing endonuclease have been identified in yeast. The sen1-1 mutation, which maps on chromosome 12, causes temperature-sensitive growth, reduced in vitro endonuclease activity, and in vivo accumulation of unspliced pre-tRNAs. The sen2-1 mutation does not confer a detectable growth defect, but causes a temperature-dependent reduction of in vitro endonuclease activity. Pre-tRNAs do not accumulate in sen2-1 strains. The in vitro enzyme activities of sen1-1 and sen2-1 complement in extracts from a heterozygous diploid, but fail to complement in mixed extracts from separate sen1-1 and sen2-1 haploid strains. These results suggest a direct role for SEN gene products in the enzymatic removal of introns from tRNA that is distinct from the role of other products known to affect tRNA splicing.



Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Nicholas Parchim ◽  
Wei Wang ◽  
Takayuki Iriyama ◽  
Chen Liu ◽  
Athar H Siddiqui ◽  
...  

Preeclampsia (PE) is a serious pregnancy disease characterized by hypertension and proteinuria. Despite intensive research efforts, the underlying cause of PE remains a mystery. PE is, however, associated with abnormalities of the immune system. Here we report that the levels of C-reactive protein (CRP), an important acute phase reactant, were significantly elevated in the plasma of human with PE at the third trimester. Next, we found that CRP protein levels in the placentas of PE patients were also significantly increased compared to controls. In an effort to determine the exact role of elevated CRP in PE, we infused CRP into pregnant mice. We found that injection of CRP into pregnant mice induced hypertension (170 mmHg mean systolic vs. 125 mmHg mean systolic control; p<0.05) and proteinuria (25 mg/ug vs 12 mg/ug vehicle; p<0.05), indicating the direct role of CRP in PE. CRP is known to bind with phosphocholine on damaged cell membranes. Recent studies identified that neurokinin B (NKB), a placental enriched neuropeptide and known pathogenic molecule for PE, is phosphocholinated. This posttranslational modification increases its stability and enhances NKB-mediated receptor activation. These findings raise an intriguing hypothesis that CRP may bind with NKB coupled to NK3R activation and contribute to PE. To test this hypothesis, we conducted a pulldown assay, and we found that CRP bound with NKB. Next, using a cellular invasion assay, we revealed that CRP decreased invasion of human trophoblast cells (0.7 to 0.07 invasion index, p<0.05), while treatment with an NK3R selective antagonist, SB222200, ameliorated this shallow invasion. Finally, we provided in vivo evidence that inhibition of NK3R by SB222200 or knockdown of NK3R by specific siRNA in a potent nanoparticle delivery system significantly reduced CRP-induced hypertension and proteinuria in pregnant mice (170 mmHg mean systolic CRP-injected vs. 130 mmHg mean systolic siRNA NK3R; p<0.05 and proteinuria 25 mg/ug vs. 15 mg/ug; p<0.05). Overall, our findings demonstrate that elevated CRP contributes to PE and NKB/NK3R is a novel mechanism underlying CRP-mediated shallow invasion and disease development. These studies suggest novel pathogenic biomarkers and innovative therapeutic targets for PE.



Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 707-707
Author(s):  
Quy N Diep ◽  
Mohammed El Mabrouk ◽  
Rhian M Touyz ◽  
Ernesto L Schiffrin

P79 Angiotensin II (Ang II) is an important modulator of cell growth via AT 1 receptors, as demonstrated both in vivo and in vitro . Here, we investigated the role of different proteins involved in the cell cycle, including cyclin D1, cyclin-dependent kinase 4 (cdk4) and cdk inhibitors p21 and p27 in blood vessels of Ang II-infused rats and the effect therein of the AT 1 receptor antagonist losartan. Male Sprague Dawley rats were infused for 7 days with Ang II (120 ng/kg/min s.c.) and/or treated with losartan (10 mg/kg/day orally). DNA synthesis in mesenteric arteries was evaluated by radiolabeled 3 H-thymidine incorporation. The expression of p21, p27, cyclin D1, cdk4 and E2F, which play critical roles during G1-phase of the cell cycle process, was examined by Western blot analysis. Tail cuff systolic blood pressure (mmHg) was elevated (p<0.05, n=9) in Ang II-infused rats (161.3±8.2) vs. controls (110.1±5.3) and normalized by losartan (104.4±3.2). Radiolabeled 3 H-thymidine incorporation (cpm/100 μg DNA) showed that Ang II-infusion significantly increased DNA synthesis (152±5 vs. 102±6, p<0.05). Expression of p21 and p27 was significantly decreased in the Ang II group to 23.2±10.4% and 10.3±5.3% of controls, respectively, whereas expression of cyclin D1 and cdk4 was significantly increased in the Ang II group to 213.7±8% and 263.6±37% of controls, respectively. These effects induced by Ang II infusion was normalized in the presence of losartan. Ang II had no effect on the expression of E2F. Thus, when AT 1 receptors are stimulated in vivo , DNA synthesis is enhanced in blood vessels by activation of cyclin D1 and cdk4. Reduction in cell cycle kinase inhibitors p21 and p27 may contribute to activation of growth induced by in vivo AT 1 receptor stimulation.



2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Olan Jackson-Weaver ◽  
Jian Wu ◽  
Yongchao Gou ◽  
Yibu Chen ◽  
Meng Li ◽  
...  

Rationale: Epicardial epithelial-to-mesenchymal trasition (EMT) is a vital process in embryonic heart development. During EMT, epicardial cells acquire migratory and invasive properties, and differentiate into new cell types, including cardiac fibroblasts and coronary smooth muscle cells. Non-histone protein methylation is an emerging modulator of cell signaling. We have recently established a role for protein arginine methyltransferase-1 (PRMT1) in TGF-β-induced EMT in cultured cells. Objective: To determine the role of PRMT1 in epicardial EMT. Methods and Results: We investigated the role of PRMT1 in epicardial EMT in mouse epicardial cells. Embryonic day 9.5 (E9.5) tamoxifen administration of WT1-Cre ERT ;PRMT1 fl/fl ;ROSA-YFP fl/fl mouse embryos was used to delete PRMT1 in the epicardium. Epicardial PRMT1 deletion led to reduced epicardial migration into the myocardium, a thinner compact myocardial layer, and dilated coronary blood vessels at E15.5. Using the epicardial cell line MEC1, we found that PRMT1 siRNA prevented the increase in mesenchymal proteins Slug and Fibronectin and the decrease in epithelial protein E-Cadherin during TGF-β treatment-induced EMT. PRMT1 siRNA also reduced the migration and invasion of MEC1 cells. We further identified that PRMT1 siRNA also increased the expression of p53, a key regulator of the Slug degradation pathway. PRMT1 siRNA increases p53 expression by decreasing p53 degradation, and shifted p53 localization to the cytoplasm. In vitro methylation assays further demonstrated that PRMT1 methylates p53. Knockdown of p53 increased Slug levels and enhanced EMT, establishing p53 as a regulator of epicardial EMT through controlling Slug expression. Furthermore, RNAseq experiments in MEC1 cells demonstrated that 40% (545/1,351) of TGF-β-induced transcriptional changes were prevented by PRMT1 siRNA. Furthermore, when p53 and PRMT1 were simultaneously knocked down, TGF-β induced transcriptional control of 37% (201/545) of these PRMT1-dependent genes was restored. Conclusions: The PRMT1-p53-Slug pathway is necessary for epicardial EMT in cultured MEC1 cells as well as in the epicardium in vivo . Epicardial PRMT1 is required for the development of compact myocardium and coronary blood vessels.



2002 ◽  
Vol 103 (5) ◽  
pp. 441-449 ◽  
Author(s):  
Sharon VIVERS ◽  
Ian DRANSFIELD ◽  
Simon P. HART

Understanding the cellular and molecular mechanisms that determine whether inflammation resolves or progresses to scarring and tissue destruction should lead to the development of effective therapeutic strategies for inflammatory diseases. Apoptosis of neutrophil granulocytes is an important determinant of the resolution of inflammation, providing a mechanism for down-regulation of function and triggering clearance by macrophages without inducing a pro-inflammatory response. However, if the rate of cell death by apoptosis is such that the macrophage clearance capacity is exceeded, apoptotic cells may progress to secondary necrosis, resulting in the release of harmful cellular contents and in damage to the surrounding tissue. There are many possible ways in which the rate and capacity of the macrophage-mediated clearance of apoptotic cells may be enhanced or suppressed. Ligation of human macrophage surface CD44 by bivalent monoclonal antibodies rapidly and profoundly augments the capacity of macrophages to phagocytose apoptotic neutrophils in vitro. The molecular mechanism behind this effect and its potential significance in vivo is a current focus of research.



1989 ◽  
Vol 9 (12) ◽  
pp. 5315-5323 ◽  
Author(s):  
J Imbert ◽  
M Zafarullah ◽  
V C Culotta ◽  
L Gedamu ◽  
D Hamer

Metallothionein (MT) gene promoters in higher eucaryotes contain multiple metal regulatory elements (MREs) that are responsible for the metal induction of MT gene transcription. We identified and purified to near homogeneity a 74-kilodalton mouse nuclear protein that specifically binds to certain MRE sequences. This protein, MBF-I, was purified employing as an affinity reagent a trout MRE that is shown to be functional in mouse cells but which lacks the G+C-rich and SP1-like sequences found in many mammalian MT gene promoters. Using point-mutated MREs, we showed that there is a strong correlation between DNA binding in vitro and MT gene regulation in vivo, suggesting a direct role of MBF-I in MT gene transcription. We also showed that MBF-I can induce MT gene transcription in vitro in a mouse extract and that this stimulation requires zinc.



Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3537-3548 ◽  
Author(s):  
J. H. Duncan Bassett ◽  
John G. Logan ◽  
Alan Boyde ◽  
Moira S. Cheung ◽  
Holly Evans ◽  
...  

Calcineurin-nuclear factor of activated T cells signaling controls the differentiation and function of osteoclasts and osteoblasts, and regulator of calcineurin-2 (Rcan2) is a physiological inhibitor of this pathway. Rcan2 expression is regulated by T3, which also has a central role in skeletal development and bone turnover. To investigate the role of Rcan2 in bone development and maintenance, we characterized Rcan2−/− mice and determined its skeletal expression in T3 receptor (TR) knockout and thyroid-manipulated mice. Rcan2−/− mice had normal linear growth but displayed delayed intramembranous ossification, impaired cortical bone formation, and reduced bone mineral accrual during development as well as increased mineralization of adult bone. These abnormalities resulted from an isolated defect in osteoblast function and are similar to skeletal phenotypes of mice lacking the type 2 deiodinase thyroid hormone activating enzyme or with dominant-negative mutations of TRα, the predominant TR isoform in bone. Rcan2 mRNA was expressed in primary osteoclasts and osteoblasts, and its expression in bone was differentially regulated in TRα and TRβ knockout and thyroid-manipulated mice. However, in primary osteoblast cultures, T3 treatment did not affect Rcan2 mRNA expression or nuclear factor of activated T cells c1 expression and phosphorylation. Overall, these studies establish that Rcan2 regulates osteoblast function and its expression in bone is regulated by thyroid status in vivo.



2008 ◽  
Vol 19 (1) ◽  
pp. 171-180 ◽  
Author(s):  
Tania M. Roberts ◽  
Iram Waris Zaidi ◽  
Jessica A. Vaisica ◽  
Matthias Peter ◽  
Grant W. Brown

RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint kinase Mec1, and it forms complexes with DNA repair enzymes, including the nuclease subunit Slx4, but the role of Rtt107 in the DNA damage response remains unclear. We find that Rtt107 interacts with chromatin when cells are treated with compounds that cause replication forks to arrest. This damage-dependent chromatin binding requires the acetyltransferase Rtt109, but it does not require acetylation of the known Rtt109 target, histone H3-K56. Chromatin binding of Rtt107 also requires the cullin Rtt101, which seems to play a direct role in Rtt107 recruitment, because the two proteins are found in complex with each other. Finally, we provide evidence that Rtt107 is bound at or near stalled replication forks in vivo. Together, these results indicate that Rtt109, Rtt101, and Rtt107, which genetic evidence suggests are functionally related, form a DNA damage response pathway that recruits Rtt107 complexes to damaged or stalled replication forks.



Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1339-1339
Author(s):  
Namit Sharma ◽  
Pan Zhongda ◽  
Tracy Lauren Smith ◽  
Savar Kaul ◽  
Emilie Ernoult ◽  
...  

Abstract Dendritic cells (DCs) along with mast cells function as sentinels for the innate immune system and perform as antigen presenting cells (APCs) to mount an adaptive immune response against invading pathogen. FLT3 receptor tyrosine kinase signaling has been shown to regulate the homeostatic mechanisms of subsets of DCs particularly, CD103+DCs compared to CD11b+DCs. CD103+DCs are regarded as APCs with superior capabilities to mount an effective immune response, thus understanding their homeostasis mechanism(s)/function is of paramount importance to devise effective therapeutics including DC vaccines. The Src-like adapter protein (SLAP) has been shown to dampen the signaling downstream of receptor tyrosine kinases including FLT3, cKit, and immune cell receptors including T cell receptor, B cell receptor, and Granulocyte-monocyte colony stimulating factor receptor via by recruiting c-Cbl, an ubiquitin ligase. Here, we report that SLAP deficient mice (KO) have reduced numbers of CD103+DC in lung while equal numbers in liver and kidney compared to control mice. To further confirm reduced CD103+DC in the lung, efferocytosis assays that are dependent upon CD+103 DC in lung epithelium to cleanse the apoptotic cells were performed. Flow cytometric quantification of CD103+DCs that uptake fluorescently labeled apoptotic cells administered via intranasal route and migrate to mediastinal lymph nodes confirmed reduced number of CD103+DCs in SLAP KO mice. Further analysis of DC progenitor populations showed reduced pre-DC progenitor in the lung in SLAP KO mice while bone marrow compartment showed equal progenitor populations including pre-DC and common dendritic progenitors suggesting the role of SLAP in localized FLT3 signaling in the lung. Consistently, DCs in lymphoid compartment including spleen, thymus, inguinal and popliteal lymph node did not show any defects. Upon further dissecting the cellular mechanism, SLAP KO DCs showed increased apoptosis while having similar proliferation potential in vivo at steady state.Bone marrow progenitors from SLAP KO mice failed to generate mature DCs in the presence of FLT3 ligand in vitrodue to enhanced apoptosis at early time points. Also, submaximal inhibition of FLT3 with an inhibitor, quizartinib partially rescues the apoptotic phenotype of SLAP KO bone marrow progenitors suggesting a cell-intrinsic role of SLAP in the survival of DCs. Biochemical analysis revealed that SLAP is directly recruited to the juxta-membrane residues of the FLT3 receptor in an inducible manner suggesting a direct role of SLAP in the regulation of FLT3 signaling. Phosphoflow analysis of DCs generated in the combined presence of GMCSF and FLT3 ligands showed that SLAP promotes the signaling to SHP2 while perturbs signaling to the mTOR pathway. Together these results suggest that SLAP is a critical regulator of CD103+DCs homeostasis in selective peripheral organs including the lung. Disclosures No relevant conflicts of interest to declare.



Sign in / Sign up

Export Citation Format

Share Document