Control of stable lamellipodia formation by expression of cell surface beta 1,4-galactosyltransferase cytoplasmic domains

1994 ◽  
Vol 107 (9) ◽  
pp. 2535-2545 ◽  
Author(s):  
P.A. Appeddu ◽  
B.D. Shur

Mesenchymal cell migration on basal lamina is mediated, in part, by the binding of cell surface beta 1,4-galactosyltransferase (GalTase) to specific N-linked oligosaccharides in the E8 domain of laminin. On migrating cells, surface GalTase is anchored to the cytoskeleton; when GalTase is prevented from associating with the cytoskeleton, lamellipodia formation and subsequent migration are inhibited. To define better the involvement of GalTase-cytoskeleton interactions in cell motility, we examined the lamellipodia formation, polarity and migratory behavior of stably transfected 3T3 fibroblasts expressing increased or decreased levels of GalTase capable of interacting with the cytoskeleton. Initially, the motile behavior of individual cells was quantified in the absence of exogenous stimuli. Cells that overexpress GalTase binding sites for the cytoskeleton changed their polarity more frequently and translocated more erratically than did control cells when assayed on laminin substrata. These differences were not observed, however, when cells were plated on fibronectin, which does not contain binding sites for surface GalTase. GalTase-transfected cells were also assayed for their ability to polarize in response to a specific stimulus. In this case, the ability of a cell to reorient towards a gradient of platelet-derived growth factor was found to be directly proportional to the amount of GalTase associated with the cytoskeleton. Differences in response to platelet-derived growth factor were not due to differences in growth factor binding. Indirect immunofluorescence showed that altering the level of GalTase did not affect the ventrally distributed pool of GalTase stably associated with the cytoskeleton; however, stress fiber formation was inhibited. Thus, increasing surface GalTase binding sites for the cytoskeleton leads to erratic, multipolar behavior in the absence of any vectorial stimulus, but the ability to form a functional lamellipodium in response to a stimulus is dependent upon the amount of surface GalTase associated with the cytoskeleton. Apparently, cells are able to regulate cytoskeletal assembly and lamellipodial stability by altering the expression and/or affinity of appropriate matrix receptors, such as GalTase, and their corresponding binding sites in the cytoskeleton.

1995 ◽  
Vol 15 (3) ◽  
pp. 1244-1253 ◽  
Author(s):  
C Vaziri ◽  
D V Faller

Platelet-derived growth factor BB (PDGF-BB) is an important extracellular factor for regulating the G0-S phase transition of murine BALB/c-3T3 fibroblasts. We have investigated the expression of the PDGF beta receptor (PDGF beta R) in these cells. We show that the state of growth arrest in G0, resulting from serum deprivation, is associated with increased expression of the PDGF beta R. When the growth-arrested fibroblasts are stimulated to reenter the cell cycle by the mitogenic action of serum or certain specific combinations of growth factors, PDGF beta R mRNA levels and cell surface PDGF-BB-binding sites are markedly downregualted. Oncogene-transformed 3T3 cell lines, which fail to undergo growth arrest following prolonged serum deprivation, express constitutively low levels of the PDGF beta R mRNA and possess greatly reduced numbers of cell surface PDGF receptors, as determined by PDGF-BB binding and Western blotting (immunoblotting). Nuclear runoff assays indicate the mechanism of repression of PDGF beta R expression to be, at least in large part, transcriptional. These data indicate that expression of the PDGF beta R is regulated in a growth state-dependent manner in fibroblasts and suggest that this may provide a means by which cells can modulate their responsiveness to the actions of PDGF.


2006 ◽  
Vol 17 (11) ◽  
pp. 4846-4855 ◽  
Author(s):  
Susann Karlsson ◽  
Katarzyna Kowanetz ◽  
Åsa Sandin ◽  
Camilla Persson ◽  
Arne Östman ◽  
...  

We have previously shown that the T-cell protein tyrosine phosphatase (TC-PTP) dephosphorylates the platelet-derived growth factor (PDGF) β-receptor. Here, we show that the increased PDGF β-receptor phosphorylation in TC-PTP knockout (ko) mouse embryonic fibroblasts (MEFs) occurs primarily on the cell surface. The increased phosphorylation is accompanied by a TC-PTP–dependent, monensin-sensitive delay in clearance of cell surface PDGF β-receptors and delayed receptor degradation, suggesting PDGF β-receptor recycling. Recycled receptors could also be directly detected on the cell surface of TC-PTP ko MEFs. The effect of TC-PTP depletion was specific for the PDGF β-receptor, because PDGF α-receptor homodimers were cleared from the cell surface at the same rate in TC-PTP ko MEFs as in wild-type MEFs. Interestingly, PDGF αβ-receptor heterodimers were recycling. Analysis by confocal microscopy revealed that, in TC-PTP ko MEFs, activated PDGF β-receptors colocalized with Rab4a, a marker for rapid recycling. In accordance with this, transient expression of a dominant-negative Rab4a construct increased the rate of clearance of cell surface receptors on TC-PTP ko MEFs. Thus, loss of TC-PTP specifically redirects the PDGF β-receptor toward rapid recycling, which is the first evidence of differential trafficking of PDGF receptor family members.


1991 ◽  
Vol 11 (4) ◽  
pp. 2040-2048
Author(s):  
F Fazioli ◽  
U H Kim ◽  
S G Rhee ◽  
C J Molloy ◽  
O Segatto ◽  
...  

The erbB-2 gene product, gp185erbB-2, unlike the structurally related epidermal growth factor (EGF) receptor (EGFR), exhibits constitutive kinase and transforming activity. We used a chimeric EGFR/erbB-2 expression vector to compare the mitogenic signaling pathway of the erbB-2 kinase with that of the EGFR, at similar levels of expression, in response to EGF stimulation. The EGFR/erbB-2 chimera was significantly more active in inducing DNA synthesis than the EGFR when either was expressed in NIH 3T3 cells. Analysis of biochemical pathways implicated in signal transduction by growth factor receptors indicated that both phospholipase C type gamma (PLC-gamma) and the p21ras GTPase-activating protein (GAP) are substrates for the erbB-2 kinase in NIH 3T3 fibroblasts. However, under conditions in which activation of the erbB-2 kinase induced DNA synthesis at least fivefold more efficiently than the EGFR, the levels of erbB-2- or EGFR-induced tyrosine phosphorylation of PLC-gamma and GAP were comparable. In addition, the stoichiometry of tyrosine phosphorylation of these putative substrates by erbB-2 appeared to be at least an order of magnitude lower than that induced by platelet-derived growth factor receptors at comparable levels of mitogenic potency. Thus, our results indicate that differences in tyrosine phosphorylation of PLC-gamma and GAP do not account for the differences in mitogenic activity of the erbB-2 kinase compared with either the EGFR or platelet-derived growth factor receptor in NIH 3T3 fibroblasts.


1989 ◽  
Vol 75 (4) ◽  
pp. 362-366
Author(s):  
Lilia Alberghina ◽  
Renata Zippel ◽  
Enzo Martegani ◽  
Emmapaola Sturani

Platelet derived growth factor (PDGF) interaction with the cells induces rapid tyrosine phosphorylation of the PDGF receptor in a dose dependent manner. At 37 °C phosphorylation of the receptor is followed by its dephosphorylation and internalization. It is observed that the higher the ligand concentration, the more transient is the response, and the observed kinetics are explained by a simple kinetic model. At 4 °C the phosphorylated form of the receptor is more stable; however, if PDGF is dissociated from the cell surface-associated ligand-receptor complexes, the receptors are rapidly dephosphorylated, indicating that phosphatases specific for phosphotyrosine groups are very active within the cells. In fact, addition of orthovanadate stabilizes the phosphorylated form of the receptor and helps in recognizing possible physiological substrates of the PDGF receptor kinase. The expression of PDGF receptors on the cell surface has been investigated under different growth conditions: a positive correlation exists between the amount of PDGF receptors and the duplication times of exponentially growing cultures. Moreover, during exponential growth the PDGF receptors are scarcely expressed, and their number increases reaching a maximal value when the population enters the stationary phase.


1996 ◽  
Vol 16 (2) ◽  
pp. 712-723 ◽  
Author(s):  
C Wang ◽  
B Song

Platelet-derived growth factor alpha receptor (PDGF alpha R) is a transmembrane tyrosine kinase receptor for all three existing PDGF isoforms, AA, AB, and BB. Transcripts of PDGF alpha R are detected as early as in fertilized mouse eggs and throughout adulthood in a time- and space-specific manner, thereby suggesting an important role of PDGFs in mammalian development. In this study, we have investigated the mechanism involved in cell-type-specific PDGF alpha R gene expression during early embryonic development. Using F9 embryonic carcinoma cells as an in vitro study model, we identified a differentiation-dependent enhancer element within the PDGF alpha R promoter that controlled receptor expression during parietal endoderm cell differentiation induced by retinoic acid and dibutyryl cyclic AMP treatment. The differentiation-dependent enhancer element sequence bore no resemblance to consensus DNA-binding sites of either the retinoic acid receptor family or the cyclic AMP-responsive element-binding protein family. It was composed of two identical 12-bp direct repeats separated by a 17-bp insert sequence enriched in C and A nucleotides. Although only a single repeat was needed to form specific DNA-protein complexes with factors present in F9 parietal endoderm cell extracts, both repeats together were necessary to display cell-type-specific enhancing activity. Mutational analysis revealed that the protein-binding sites within the repeat sequences were identical to GATA-binding sites. In this study, we provided evidence to suggest that a member of the GATA transcription factor family (GATA-4) is responsible for parietal endoderm-specific PDGF alpha R expression.


1988 ◽  
Vol 106 (2) ◽  
pp. 415-422 ◽  
Author(s):  
RA Majack ◽  
LV Goodman ◽  
VM Dixit

Thrombospondin (TS) is an extracellular glycoprotein whose synthesis and secretion by vascular smooth muscle cells (SMC) is regulated by platelet-derived growth factor. We have used a panel of five monoclonal antibodies against TS to determine an essential role for thrombospondin in the proliferation of cultured rat aortic SMC. All five monoclonal antibodies inhibited SMC growth in 3-d and extended cell number assays; the growth inhibition was specific for anti-TS IgG. The effects of one antibody (D4.6) were examined in detail and were found to be reversable and dose dependent. Cells treated with D4.6 at 50 micrograms/ml (which resulted in a greater than 60% reduction in cell number at day 8) were morphologically identical to control cells. D4.6-treated SMC were analyzed by flow cytofluorimetry and were found to be arrested in the G1 phase of the cell cycle. To determine a possible cellular site of action of TS in cell growth, SMC were examined by immunofluorescence using a polyclonal antibody against TS. TS was observed diffusely bound to the cell surface of serum- or platelet-derived growth factor-treated cells. The binding of TS to SMC was abolished in the presence of heparin, which prevents the binding of TS to cell surfaces and inhibits the growth of SMC. Monoclonal antibody D4.6, like heparin, largely abolished cell surface staining of TS but had no detectable effect on the cellular distribution of fibronectin. These results were corroborated by metabolic labeling experiments. We conclude that cell surface-associated TS is functionally essential for the proliferation of vascular SMC, and that this requirement is temporally located in the G1 phase of the cell cycle. Agents that perturb the interaction of TS with the SMC surface, such as heparin, may inhibit SMC proliferation in this manner.


2006 ◽  
Vol 66 (14) ◽  
pp. 7270-7275 ◽  
Author(s):  
Faith B. Davis ◽  
Heng-Yuan Tang ◽  
Ai Shih ◽  
Travis Keating ◽  
Lawrence Lansing ◽  
...  

1991 ◽  
Vol 278 (2) ◽  
pp. 447-452 ◽  
Author(s):  
R Brambilla ◽  
R Zippel ◽  
E Sturani ◽  
L Morello ◽  
A Peres ◽  
...  

Stimulation in vivo of Swiss 3T3 fibroblasts with platelet-derived growth factor (PDGF) in the presence of orthovanadate induces the tyrosine phosphorylation of a 39 kDa protein, identified as the phosphorylated slow-migrating form of calpactin I (annexin II) heavy chain, p36. In fact, in PDGF-stimulated cells, anti-(calpactin I) antibodies recognize a doublet of bands, p36 and p39, and the latter disappears upon treatment with phosphatase. In many regards phosphorylation of p39 differs from the rapid and transient phosphorylation of the PDGF receptor and of other substrates: (a) it has slower kinetics but is then stable for longer periods of time; (b) it occurs at 37 degrees C but not at 4 degrees C; and (c) whereas most of the tyrosine-phosphorylated proteins are associated with membrane-enriched preparations, membrane association of p39 only occurs in the presence of Ca2+. Moreover, calpactin I leaks out of permeabilized cells at 0.1 microM free Ca2+, whereas it remains associated with the cells at concentrations of Ca2+ greater than or equal to 1 microM. PDGF does not stimulate phosphoinositide turnover (and thus Ca2+ mobilization) at 4 degrees C; thus it can be suggested that the Ca(2+)-dependent translocation of the protein to membrane/cytoskeletal structures is a necessary condition for its phosphorylation. In addition, calpactin I may not be a direct substrate for the PDGF receptor kinase, but rather the substrate of another tyrosine kinase activated by the receptor.


2020 ◽  
Author(s):  
Ah-Lai Law ◽  
Shamsinar Jalal ◽  
Fuad Mosis ◽  
Tommy Pallett ◽  
Ahmad Guni ◽  
...  

AbstractCell migration is important for development and its aberrant regulation contributes to many diseases. The Scar/WAVE complex is essential for Arp2/3 mediated lamellipodia formation during mesenchymal cell migration and several coinciding signals activate it. However, so far, no direct negative regulators are known. We have identified Nance-Horan Syndrome-like 1 protein (NHSL1) as a novel, direct binding partner of the Scar/WAVE complex, which co-localise at protruding lamellipodia. This interaction is mediated by the Abi SH3 domain and two binding sites in NHSL1. Furthermore, active Rac binds to NHSL1 at two regions that mediate leading edge targeting of NHSL1 suggesting that Rac recruits NHSL1. Surprisingly, NHSL1 inhibits cell migration through its interaction with the Scar/WAVE complex. Mechanistically, NHSL1 may reduce cell migration efficiency by impeding Arp2/3 activity, as measured in cells using a novel Arp2/3 FRET-FLIM biosensor, resulting in reduced F-actin content of lamellipodia, and consequently impairing the stability of lamellipodia protrusions.


Sign in / Sign up

Export Citation Format

Share Document