Are caspases involved in the death of cells with a transcriptionally inactive nucleus? Sperm and chicken erythrocytes

1998 ◽  
Vol 111 (18) ◽  
pp. 2707-2715 ◽  
Author(s):  
M. Weil ◽  
M.D. Jacobson ◽  
M.C. Raff

We show that mouse sperm die spontaneously within 1–2 days in culture and that treatment with either staurosporine (STS) and cycloheximide (CHX) or a peptide caspase inhibitor does not accelerate or delay the cell death. Chicken erythrocytes, by contrast, are induced to die by either serum deprivation or treatment with STS and CHX, and embryonic erythrocytes are more sensitive than adult erythrocytes to both treatments. Although these erythrocyte deaths display a number of features that are characteristic of apoptosis, they are not blocked, or even delayed, by peptide caspase inhibitors, and most of the cells die without apparently activating caspases. A small proportion of the dying erythrocytes do activate caspase-3, but even these cells, which seem to be the least mature erythrocytes, die just as quickly in the presence of caspase inhibitors. Our findings raise the possibility that both mouse sperm and chicken erythrocytes have a death programme that may not depend on caspases and that chicken erythrocytes lose caspases as they mature. Chicken erythrocytes may provide a useful ‘stripped down’ cell system to try to identify the protein components of such a death programme, which may serve to back-up the conventional caspase-dependent suicide mechanism in many cell types.

2002 ◽  
Vol 83 (12) ◽  
pp. 3153-3161 ◽  
Author(s):  
R. Duval ◽  
V. Bellet ◽  
S. Delebassée ◽  
C. Bosgiraud

Maedi–visna virus (MVV) causes encephalitis, pneumonia and arthritis in sheep. In vitro, MVV infection and replication lead to strong cytopathic effects characterized by syncytia formation and subsequent cellular lysis. It was demonstrated previously that MVV infection in vitro induces cell death of sheep choroid plexus cells (SCPC) by a mechanism that can be associated with apoptotic cell death. Here, the relative implication of several caspases during acute infection with MVV is investigated by employing diverse in vitro and in situ strategies. It was demonstrated using specific pairs of caspase substrates and inhibitors that, during in vitro infection of SCPC by MVV, the two major pathways of caspase activation (i.e. intrinsic and extrinsic pathways) were stimulated: significant caspase-9 and -8 activities, as well as caspase-3 activity, were detected. To study the role of caspases during MVV infection in vitro, specific, cell-permeable, caspase inhibitors were used. First, these results showed that both z-DEVD-FMK (a potent inhibitor of caspase-3-like activities) and z-VAD-FMK (a broad spectrum caspase inhibitor) inhibit caspase-9, -8 and -3 activities. Second, both irreversible caspase inhibitors, z-DEVD-FMK and z-VAD-FMK, delayed MVV-induced cellular lysis as well as virus growth. Third, during SCPC in vitro infection by MVV, cells were positively stained with FITC-VAD-FMK, a probe that specifically stains cells containing active caspases. In conclusion, these data suggest that MVV infection in vitro induces SCPC cell death by a mechanism that is strongly dependent on active caspases.


Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2970-2972 ◽  
Author(s):  
Andrew S. Cowburn ◽  
Jessica F. White ◽  
John Deighton ◽  
Sarah R. Walmsley ◽  
Edwin R. Chilvers

Abstract In most cell types constitutive and ligand-induced apoptosis is a caspase-dependent process. In neutrophils, however, the broad-spectrum caspase inhibitor z-VAD-fmk enhances tumor necrosis factor-α (TNFα)-induced cell death, and this has been interpreted as evidence for caspase-dependent and -independent cell death pathways. Our aim was to determine the specificity of the effect of z-VAD-fmk in neutrophils and define the potential mechanism of action. While confirming that z-VAD-fmk (> 100 μM) enhances TNFα-induced neutrophil apoptosis, lower concentrations (1-30 μM) completely blocked TNFα-stimulated apoptosis. Boc-D-fmk, a similar broad-spectrum caspase inhibitor, and z-IETD-fmk, a selective caspase-8 inhibitor, caused a concentration-dependent inhibition of only TNFα-stimulated apoptosis. Moreover, the caspase-9 inhibitor, Ac-LEHD-cmk, had no effect on TNFα-induced apoptosis, and z-VAD-fmk and Boc-D-fmk inhibited TNFα-stimulated reactive oxygen species (ROS) generation. These data suggest that TNFα-induced apoptosis in neutrophils is fully caspase dependent and uses a mitochondrial-independent pathway and that the proapoptotic effects of z-VAD-fmk are compound specific and ROS independent.


2004 ◽  
Vol 180 (3) ◽  
pp. 479-486 ◽  
Author(s):  
CJ Auernhammer ◽  
F Dorn ◽  
G Vlotides ◽  
S Hengge ◽  
FB Kopp ◽  
...  

The effects of murine oncostatin M (mOSM) are specifically mediated by the heterodimeric oncostatin M receptor (OSMR)/gp130 receptor complex. In the current study we demonstrate that murine adrenocortical Y-1 tumor cells express the OSMR/gp130 complex. Incubation of Y-1 cells with 1 and 10 ng/ml mOSM induces cell death due to specific induction of apoptosis. Western blot analysis of Y-1 cells incubated with mOSM for 24 h revealed caspase-3 cleavage and poly(ADP-ribase) polymerase (PARP) cleavage. In a proliferation assay system, incubation of Y-1 cells with 0.01, 0.1, 1 and 10 ng/ml mOSM for 24 h resulted in a decrease in cell numbers to 99+/-2%, 84+/-9%, 50+/-7% and 43+/-5% respectively of untreated control (defined as 100%). Pretreatment of Y-1 cells with the Jak2 inhibitor AG490 (100 microM) rescued Y-1 cells from OSM-induced (10 ng/ml) cell death. Similarly, pretreatment of Y-1 cells with the general caspase inhibitor Z-VAD-FMK (42 microM) rescued Y-1 cells from OSM-induced (10 ng/ml) cell death. In summary, we show that adrenocortical Y-1 tumor cells express the OSMR/gp130 complex and that mOSM induces the Jak-STAT signaling cascade in these cells. Murine OSM in a dose-dependent manner induces apoptosis in adrenocortical Y-1 tumor cells. Apoptosis was demonstrated by caspase-3 cleavage and PARP cleavage. Rescue of Y-1 cells from mOSM-induced apoptosis by the Jak2 inhibitor, AG490, and the general caspase inhibitor, Z-VAD-FMK, demonstrates Jak activation and subsequent caspase activation to be essential for mOSM-induced apoptosis in adrenocortical Y-1 tumor cells. The putative role of OSM as an immunotherapeutic agent in human adrenocortical cancer remains to be elucidated.


2007 ◽  
Vol 35 (05) ◽  
pp. 897-909 ◽  
Author(s):  
Phil-Dong Moon ◽  
Hyun-Na Koo ◽  
Hyun-Ja Jeong ◽  
Ho-Jeong Na ◽  
Su-Jin Kim ◽  
...  

The effect of Haeamtang (HAT) on the colon cancer HT-29 cells was investigated in this study. A water extract of HAT significantly decreased the number of HT-29 cells in a dose-and time-dependent manner as determined by a MTT assay. Flow cytometry results revealed a dose- and time-dependent increase of dead cells in HT-29 cells treated with HAT extract. The anticancer activity of the H AT extract is attributed to apoptosis induced in HT-29 cells, which was demonstrated by increased caspase-3 activity and poly-ADP-ribose polymerase fragmentation. A selective caspase inhibitor, z-VAD-fmk, inhibited the HAT-induced cell death. Taken together, these results demonstrate that HAT extract induces apoptosis in HT-29 cells.


Author(s):  
В.Е. Маркова ◽  
Д.К. Шишкова ◽  
А.Г. Кутихин

Актуальность. Формирующиеся при перенасыщении крови ионами кальция и фосфора и циркулирующие в кровотоке кальций-фосфатные бионы (КФБ) вызывают дисфункцию эндотелия вследствие гибели части артериальных эндотелиальных клеток (ЭК). Цель исследования. Оценить типы гибели первичных артериальных ЭК человека под воздействием физиологических и супрафизиологических концентраций сферических КФБ (СКФБ) и игольчатых КФБ (ИКФБ). Материалы и методы. К конфлюэнтным культурам первичных ЭК коронарной и внутренней грудной артерии человека в 96-луночных планшетах были добавлены равные объемы (10 мкл на лунку) суспензий СКФБ и ИКФБ с оптической плотностью 0,08-0,10 (физиологическая концентрация) или 0,42-0,45 (супрафизиологическая концентрация) на длине волны 650 нм. Во всех экспериментальных группах также производилось селективное ингибирование каспазы-3 (Z-D(OMe)E(OMe)VD(OMe)-FMK, 100 мкмоль/л) или ингибирование всех каспаз (Z-VAD(OMe)-FMK, 100 мкмоль/л) для оценки типа клеточной гибели (регулируемая или моментальная). Жизнеспособность клеток определялась посредством последовательного колориметрического определения их метаболической активности через 4, 24 и 48 часов после добавления КФБ. Результаты. При добавлении супрафизиологических концентраций КФБ уже на первой временной точке большинство (60-85%) эндотелиальных клеток погибало вне зависимости от типа добавленных КФБ и воздействия ингибиторов каспаз, при этом через 24 и 48 часов экспозиции ингибиторы каспаз оказывали некоторое цитопротективное действие на незначительное количество выживших клеток. При добавлении физиологических концентраций КФБ ингибиторы каспаз оказывали выраженное цитопротективное действие через 24 и 48 часов экспозиции, при этом ИКФБ демонстрировали существенно более высокую токсичность для ЭК в сравнении с СКФБ. Независимо от временной точки пан-каспазный ингибитор оказывал значительно более выраженное цитопротективное действие по сравнению с селективным ингибитором каспазы-3, что свидетельствует о кумулятивном эффекте ингибирования каспаз, возникающем, вероятно, вследствие запуска внутреннего пути апоптоза. Заключение. В супрафизиологических концентрациях КФБ вызывают моментальную гибель абсолютного большинства ЭК, однако в физиологических концентрациях ингибиторы каспаз существенно повышают выживаемость ЭК, что свидетельствует о регулируемом направлении их клеточной гибели. Дальнейшие исследования в этом направлении должны расшифровать молекулярные пути регулируемой клеточной гибели ЭК под воздействием физиологических концентраций КФБ. Background. Calcium phosphate bions (CPB) formed and circulating in the blood at its supersaturation with calcium and phosphate provoke endothelial dysfunction by causing the demise of arterial endothelial cells (ECs). Aim. To examine cell death subroutines of human primary arterial ECs exposed to physiological and supraphysiological concentrations of spherical CPB (CPB-S) and needle-shaped CPB (CPB-N). Materials and methods. Equal volumes (10 μL) of CPB-S and CPB-N at physiological concentration (optical density at 650 nm wavelength = 0.08-0.10) or supraphysiological amounts (optical density at 650 nm wavelength = 0.42-0.45) were added to the confluent primary human coronary artery and internal thoracic artery ECs cultured in 96-well plates. In all experimental groups, we selectively inhibited caspase-3 by adding Z-D(OMe)E(OMe)VD(OMe)-FMK (100 μmol/L) or all caspases (Z-VAD(OMe)-FMK, 100 μmol/L) to assess whether the CPB-induced cell death is regulated or accidental. Cell viability was evaluated by sequential colorimetric determination of metabolic activity at 4, 24, and 48 hours of incubation with CPB. Results. At supraphysiological CPB concentrations, the majority (60-85%) of ECs died regardless of CPB type and caspase inhibitors, albeit at 24- and 48-hour time points the latter had minor cytoprotective action. However at physiological CPB levels, caspase inhibitors rescued a considerable proportion of ECs after 24 or 48 hours of exposure, and CPB-N had significantly higher toxicity than CPB-S. Regardless of the time point, the cytoprotective effect of the pan-caspase inhibitor was significantly higher than that of the selective caspase-3 inhibitor indicating a cumulative caspase inhibition and suggesting that cell death was precipitated by an intrinsic apoptosis pathway. Conclusion. At supraphysiological concentrations, CPB cause instant cell death; yet at physiological amounts, caspase inhibitors rescue the majority of ECs testifying to the regulated cell death. Further studies in this field should decipher the molecular pathways of CPB-induced regulated cell death of ECs.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Amutha Selvamani ◽  
Farida Sohrabji

Background: MicroRNAs serve as translational inhibitors and offer a unique therapeutic target for acute diseases such as stroke. Profiling of circulating miRNA after stroke identified mir363, whose expression was inversely correlated with infarct volume. Middle aged female rats show worse stroke outcomes than younger females and have much lower levels of mir363. Our recent studies showed that iv injections of miR363 mimic to middle aged females, significantly improved stroke outcome. The present study is designed to determine the mechanisms by which miR-363 acts as a therapeutic miR. Methods: Middle aged (12 mo) females were subject to MCAo. At 4h post-stroke, animals received a tail-vein injection of miR-363-3p FAM or scrambled control. Animals were terminated at 48h or 5d post-MCAo and perfused transcardially or processed for protein, respectively. To determine which neural cell types localized exogenous mir363-3p, combined immunofluorescence was performed for cell specific markers (neuronal (NeuN), astrocytic (GFAP), microglial (CD11b) and endothelial (PECAM)) and mir363-3p-FAM mimic on coronal brain sections (25 mm thickness). Protein lysates from the ischemic tissue was analyzed for caspase-3 expression by Western blot analysis. Results: FAM-labeled mir363-3p was widely detected in the forebrain. The majority of NeuN+ cells in the cortex and striatum were also labeled with FAM-363-3p, indicating a robust internalization of the mimic in neurons. FAM-mir363-3p was also localized to a few microglia (CD11b +), virtually no double-label was seen in astrocytes and endothelial cells. Mir363 decreased the expression and functional activity of caspase3 in the ischemic hemisphere. Conclusion: Collectively, the data suggests that exogenous miR-363-3p is shuttled to the brain and is preferentially internalized by neurons. Together with the caspase-3 regulation, our data suggests that mir363 may improve stroke outcomes by suppressing a cell death effector.


2009 ◽  
Vol 297 (5) ◽  
pp. E1187-E1196 ◽  
Author(s):  
Katherine J. Hughes ◽  
Kari T. Chambers ◽  
Gordon P. Meares ◽  
John A. Corbett

For many cell types, including pancreatic β-cells, nitric oxide is a mediator of cell death; however, it is paradoxical that for a given cell type nitric oxide can induce both necrosis and apoptosis. This report tests the hypothesis that cell death mediated by nitric oxide shifts from an early necrotic to a late apoptotic event. Central to this transition is the ability of β-cells to respond and repair nitric oxide-mediated damage. β-Cells have the ability to repair DNA that is damaged following 24-h incubation with IL-1; however, cytokine-induced DNA damage becomes irreversible following 36-h incubation. This irreversible DNA damage following 36-h incubation with IL-1 correlates with the activation of caspase-3 (cleavage and activity). The increase in caspase activity correlates with reductions in endogenous nitric oxide production, as nitric oxide is an inhibitor of caspase activity. In contrast, caspase cleavage or activation is not observed under conditions in which β-cells are capable of repairing damaged DNA (24-h incubation with cytokines). These findings provide evidence that β-cell death in response to cytokines shifts from an early necrotic process to apoptosis and that this shift is associated with irreversible DNA damage and caspase-3 activation.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Anat Idan-Feldman ◽  
Regina Ostritsky ◽  
Illana Gozes

The peptide drug candidate NAP (davunetide) has demonstrated protective effects in variousin vivoandin vitromodels of neurodegeneration. NAP was shown to reduce tau hyperphosphorylation as well as to prevent caspase-3 activation and cytochrome-3 release from mitochondria, both characteristic of apoptotic cell death. Recent studies suggest that caspases may play a role in tau pathology. The purpose of this study was to evaluate the effect of NAP on tau hyperphosphorylation and caspase activity in the same biological system. Our experimental setup used primary neuronal cultures subjected to oxygen-glucose deprivation (OGD), with and without NAP or caspase inhibitor. Cell viability was assessed by measuring mitochondrial activity (MTS assay), and immunoblots were used for analyzing protein level. It was shown that apoptosis was responsible for all cell death occurring following ischemia, and NAP treatment showed a concentration-dependent protection from cell death. Ischemia caused an increase in the levels of active caspase-3 and hyperphosphorylated tau, both of which were prevented by either NAP or caspase-inhibitor treatment. Our data suggest that, in this model system, caspase activation may be an upstream event to tau hyperphosphorylation, although additional studies will be required to fully elucidate the cascade of events.


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 295-304 ◽  
Author(s):  
Chien-Ying Liu ◽  
Akihiro Takemasa ◽  
W. Conrad Liles ◽  
Richard B. Goodman ◽  
Mechthild Jonas ◽  
...  

Abstract It is increasingly clear that there are caspase-dependent and -independent mechanisms for the execution of cell death and that the utilization of these mechanisms is stimulus- and cell type–dependent. Intriguingly, broad-spectrum caspase inhibition enhances death receptor agonist-induced cell death in a few transformed cell lines. Endogenously produced oxidants are causally linked to necroticlike cell death in these instances. We report here that broad-spectrum caspase inhibitors effectively attenuated apoptosis induced in human neutrophils by incubation with agonistic anti-Fas antibody or by coincubation with tumor necrosis factor-α (TNF-α) and cycloheximide ex vivo. In contrast, the same caspase inhibitors could augment cell death upon stimulation by TNF-α alone during the 6-hour time course examined. Caspase inhibitor–sensitized, TNF-α–stimulated, dying neutrophils exhibit apoptoticlike and necroticlike features. This occurred without apparent alteration in nuclear factor–κB (NF-κB) activation. Nevertheless, intracellular oxidant production was enhanced and sustained in caspase inhibitor-sensitized, TNF-α–stimulated neutrophils obtained from healthy subjects. However, despite reduced or absent intracellular oxidant production following TNF-α stimulation, cell death was also augmented in neutrophils isolated from patients with chronic granulomatous disease incubated with a caspase inhibitor and TNF-α. These results demonstrate that, in human neutrophils, TNF-α induces a caspase-independent but protein synthesis–dependent cell death signal. Furthermore, they suggest that TNF-α activates a caspase-dependent pathway that negatively regulates reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Justin R. Hendrix ◽  
Anne-Marie Overstreet ◽  
Antonia Boger-May ◽  
David Boone

Background and Hypothesis:   Intestinal epithelial cell (IEC) turnover occurs every four-to-five days. In inflammatory bowel disease (IBD), IECs undergo increased cell death due to inflammation of intestinal villi and colonic crypts. This cell death leads to increased permeability of the intestinal barrier. This study examined the pathogenesis of IBD, focusing on innate immunity using mice with spontaneous innate immune colitis. The objective was to observe if there is a significant difference in expression of apoptosis in colitic mice vs. control mice.  Experimental Design:  Mice expressing the NF-kB inhibitor TNFAIP3 in the villi of IECs were interbred with RAG1-/- mice. TNFAIP3 x RAG1-/- (TRAG) mice developed 100% penetrant colitis by 6 weeks of age that was not observed in TNFAIP3 or RAG1-/- littermates. The presence of activated caspase-3 in distal colons was detected using immunofluorescence and quantified using ImageJ to compare differences between 4- and 8-week-old RAG vs.TRAG mice.   Results:  Increased numbers of caspase-3+ cells were found in TRAG mice compared to RAG mice. After treatment with antibiotics, similar levels of capase-3 were detected in both groups.   Conclusion and Potential Impact:  This investigation suggests that cell death in TRAG mice were increased due to deficient innate immunity in IECs. Thus, bacteria play a direct role by killing IECs or an indirect role by causing inflammation. Understanding how innate immune activation drives cell death in IECs, may lead to a better understanding of the complex regulation of IBD, and improved therapeutic agents targeting novel cell types in the remission of chronic IBD. 


Sign in / Sign up

Export Citation Format

Share Document