Subversion of integrins by enteropathogenic Yersinia

2001 ◽  
Vol 114 (1) ◽  
pp. 21-28 ◽  
Author(s):  
R.R. Isberg ◽  
P. Barnes

Enteropathogenic Yersinia are gram-negative bacterial species that translocate from the lumen of the intestine and are able to grow within deep tissue sites. During the earliest stages of disease, the organism is able to bind integrin receptors that are presented on the apical surface of M cells in the intestine, which allows its internalization and subsequent translocation into regional lymph nodes. The primary integrin substrate is the outer-membrane protein invasin, which binds with extraordinarily high affinity to at least five different integrins that have the (beta)(1) chain. Bacterial uptake into host cells is modulated by the affinity of receptor-substrate interaction, receptor concentration and the ability of the substrate to aggregate target receptors.

2001 ◽  
Vol 69 (1) ◽  
pp. 508-517 ◽  
Author(s):  
Suat L. G. Cirillo ◽  
Luiz E. Bermudez ◽  
Sahar H. El-Etr ◽  
Gerald E. Duhamel ◽  
Jeffrey D. Cirillo

ABSTRACT Successful parasitism of host cells by intracellular pathogens involves adherence, entry, survival, intracellular replication, and cell-to-cell spread. Our laboratory has been examining the role of early events, adherence and entry, in the pathogenesis of the facultative intracellular pathogen Legionella pneumophila. Currently, the mechanisms used by L. pneumophila to gain access to the intracellular environment are not well understood. We have recently isolated three loci, designated enh1,enh2, and enh3, that are involved in the ability of L. pneumophila to enter host cells. One of the genes present in the enh1 locus, rtxA, is homologous to repeats in structural toxin genes (RTX) found in many bacterial pathogens. RTX proteins from other bacterial species are commonly cytotoxic, and some of them have been shown to bind to β2 integrin receptors. In the current study, we demonstrate that the L. pneumophila rtxA gene is involved in adherence, cytotoxicity, and pore formation in addition to its role in entry. Furthermore, an rtxA mutant does not replicate as well as wild-type L. pneumophila in monocytes and is less virulent in mice. Thus, we conclude that the entry genertxA is an important virulence determinant in L. pneumophila and is likely to be critical for the production of Legionnaires' disease in humans.


2003 ◽  
Vol 198 (4) ◽  
pp. 603-614 ◽  
Author(s):  
Ka-Wing Wong ◽  
Ralph R. Isberg

Efficient entry of the bacterium Yersinia pseudotuberculosis into mammalian cells requires the binding of the bacterial invasin protein to β1 integrin receptors and the activation of the small GTPase Rac1. We report here that this Rac1-dependent pathway involves recruitment of phosphoinositol-4-phosphate-5-kinase (PIP5K) to form phosphoinositol-4,5-bisphosphate (PIP2) at the phagocytic cup. Reducing the concentration of PIP2 in the target cell by using a membrane-targeted PIP2-specific phosphatase lowered bacterial uptake proportionately. PIP2 formation is regulated by Arf6. An Arf6 derivative defective for nucleotide binding (Arf6N122I) interfered with uptake and decreased the level of PIP2 around extracellular bacteria bound to host cells. This reduction in PIP2 occurred in spite of fact that PIP5K appeared to be recruited efficiently to the site of bacterial binding, indicating a role for Arf6 in activation of the kinase. The elimination of the Rac1-GTP–bound form from the cell by the introduction of the Y. pseudotuberculosis YopE RhoGAP protein could be bypassed by the overproduction of either PIP5K or Arf6, although the degree of bypass was greater for Arf6 transfectants. These results indicate that both Arf6 and PIP5K are involved in integrin-dependent uptake, and that Arf6 participates in both activation of PIP5K as well as in other events associated with bacterial uptake.


Author(s):  
Clementina Auriemma ◽  
Maurizio Viscardi ◽  
Simona Tafuri ◽  
Luigi Pavone ◽  
Federico Capuano ◽  
...  

AbstractListeria monocytogenes enters non-phagocytic cells by binding its surface proteins inlA (internalin) and inlB to the host’s E-cadherin and Met, respectively. The two internalins play either separate or cooperative roles in the colonization of infected tissues. Here, we studied bacterial uptake into HeLa cells using an L. monocytogenes mutant strain (ΔinlA) carrying a deletion in the gene coding for inlA. The ΔinlA mutant strain showed the capability to invade HeLa cells. The monoclonal anti-β3- and anti-β1-integrin subunit antibodies prevented bacterial uptake into the cells, while the anti-β2- and anti-β4-integrin subunit antibodies failed to affect L. monocytogenes entry into HeLa cells. Three structurally distinct disintegrins (kistrin, echistatin and flavoridin) also inhibited bacterial uptake, showing different potencies correlated to their selective affinity for the β3- and β1-integrin subunits. In addition to inducing Met phosphorylation, infection of cells by the L. monocytogenes ΔinlA mutant strain promoted the tyrosine phosphorylation of the focal adhesion-associated proteins FAK and paxillin. Our findings provide the first evidence that β3- and β1-integrin receptors play a role in the inlB-dependent internalization of L. monocytogenes into host cells.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chelsea A. Weitekamp ◽  
Allison Kvasnicka ◽  
Scott P. Keely ◽  
Nichole E. Brinkman ◽  
Xia Meng Howey ◽  
...  

Abstract Background Across taxa, animals with depleted intestinal microbiomes show disrupted behavioral phenotypes. Axenic (i.e., microbe-free) mice, zebrafish, and fruit flies exhibit increased locomotor behavior, or hyperactivity. The mechanism through which bacteria interact with host cells to trigger normal neurobehavioral development in larval zebrafish is not well understood. Here, we monoassociated zebrafish with either one of six different zebrafish-associated bacteria, mixtures of these host-associates, or with an environmental bacterial isolate. Results As predicted, the axenic cohort was hyperactive. Monoassociation with three different host-associated bacterial species, as well as with the mixtures, resulted in control-like locomotor behavior. Monoassociation with one host-associate and the environmental isolate resulted in the hyperactive phenotype characteristic of axenic larvae, while monoassociation with two other host-associated bacteria partially blocked this phenotype. Furthermore, we found an inverse relationship between the total concentration of bacteria per larvae and locomotor behavior. Lastly, in the axenic and associated cohorts, but not in the larvae with complex communities, we detected unexpected bacteria, some of which may be present as facultative predators. Conclusions These data support a growing body of evidence that individual species of bacteria can have different effects on host behavior, potentially related to their success at intestinal colonization. Specific to the zebrafish model, our results suggest that differences in the composition of microbes in fish facilities could affect the results of behavioral assays within pharmacological and toxicological studies.


2021 ◽  
Vol 22 (2) ◽  
pp. 478
Author(s):  
Kai-Wei Yu ◽  
Peng Xue ◽  
Yang Fu ◽  
Liang Yang

The bacterial type VI secretion system (T6SS) is a protein secretion apparatus widely distributed in Gram-negative bacterial species. Many bacterial pathogens employ T6SS to compete with the host and to coordinate the invasion process. The T6SS apparatus consists of a membrane complex and an inner tail tube-like structure that is surrounded by a contractile sheath and capped with a spike complex. A series of antibacterial or antieukaryotic effectors is delivered by the puncturing device consisting of a Hcp tube decorated by the VgrG/PAAR complex into the target following the contraction of the TssB/C sheath, which often leads to damage and death of the competitor and/or host cells. As a tool for protein secretion and interspecies interactions, T6SS can be triggered by many different mechanisms to respond to various physiological conditions. This review summarizes our current knowledge of T6SS in coordinating bacterial stress responses against the unfavorable environmental and host conditions.


2004 ◽  
Vol 72 (10) ◽  
pp. 5983-5992 ◽  
Author(s):  
Jessica A. Sexton ◽  
Jennifer L. Miller ◽  
Aki Yoneda ◽  
Thomas E. Kehl-Fie ◽  
Joseph P. Vogel

ABSTRACT Legionella pneumophila utilizes a type IV secretion system (T4SS) encoded by 26 dot/icm genes to replicate inside host cells and cause disease. In contrast to all other L. pneumophila dot/icm genes, dotU and icmF have homologs in a wide variety of gram-negative bacteria, none of which possess a T4SS. Instead, dotU and icmF orthologs are linked to a locus encoding a conserved cluster of proteins designated IcmF-associated homologous proteins, which has been proposed to constitute a novel cell surface structure. We show here that dotU is partially required for L. pneumophila intracellular growth, similar to the known requirement for icmF. In addition, we show that dotU and icmF are necessary for optimal plasmid transfer and sodium sensitivity, two additional phenotypes associated with a functional Dot/Icm complex. We found that these effects are due to the destabilization of the T4SS at the transition into the stationary phase, the point at which L. pneumophila becomes virulent. Specifically, three Dot proteins (DotH, DotG, and DotF) exhibit decreased stability in a ΔdotU ΔicmF strain. Furthermore, overexpression of just one of these proteins, DotH, is sufficient to suppress the intracellular growth defect of the ΔdotU ΔicmF mutant. This suggests a model where the DotU and IcmF proteins serve to prevent DotH degradation and therefore function to stabilize the L. pneumophila T4SS. Due to their wide distribution among bacterial species and their genetic linkage to known or predicted cell surface structures, we propose that this function in complex stabilization may be broadly conserved.


2015 ◽  
Vol 83 (5) ◽  
pp. 2089-2098 ◽  
Author(s):  
Seongok Kim ◽  
Hyelyeon Hwang ◽  
Kwang-Pyo Kim ◽  
Hyunjin Yoon ◽  
Dong-Hyun Kang ◽  
...  

Cronobacterspp. are opportunistic pathogens that cause neonatal meningitis and sepsis with high mortality in neonates. Despite the peril associated withCronobacterinfection, the mechanisms of pathogenesis are still being unraveled. Hfq, which is known as an RNA chaperone, participates in the interaction with bacterial small RNAs (sRNAs) to regulate posttranscriptionally the expression of various genes. Recent studies have demonstrated that Hfq contributes to the pathogenesis of numerous species of bacteria, and its roles are varied between bacterial species. Here, we tried to elucidate the role of Hfq inC. sakazakiivirulence. In the absence ofhfq,C. sakazakiiwas highly attenuated in disseminationin vivo, showed defects in invasion (3-fold) into animal cells and survival (103-fold) within host cells, and exhibited low resistance to hydrogen peroxide (102-fold). Remarkably, the loss ofhfqled to hypermotility on soft agar, which is contrary to what has been observed in other pathogenic bacteria. The hyperflagellated bacteria were likely to be attributable to the increased transcription of genes associated with flagellar biosynthesis in a strain lackinghfq. Together, these data strongly suggest thathfqplays important roles in the virulence ofC. sakazakiiby participating in the regulation of multiple genes.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Anthony S. Piro ◽  
Dulcemaria Hernandez ◽  
Sarah Luoma ◽  
Eric M. Feeley ◽  
Ryan Finethy ◽  
...  

ABSTRACT Dynamin-like guanylate binding proteins (GBPs) are gamma interferon (IFN-γ)-inducible host defense proteins that can associate with cytosol-invading bacterial pathogens. Mouse GBPs promote the lytic destruction of targeted bacteria in the host cell cytosol, but the antimicrobial function of human GBPs and the mechanism by which these proteins associate with cytosolic bacteria are poorly understood. Here, we demonstrate that human GBP1 is unique among the seven human GBP paralogs in its ability to associate with at least two cytosolic Gram-negative bacteria, Burkholderia thailandensis and Shigella flexneri. Rough lipopolysaccharide (LPS) mutants of S. flexneri colocalize with GBP1 less frequently than wild-type S. flexneri does, suggesting that host recognition of O antigen promotes GBP1 targeting to Gram-negative bacteria. The targeting of GBP1 to cytosolic bacteria, via a unique triple-arginine motif present in its C terminus, promotes the corecruitment of four additional GBP paralogs (GBP2, GBP3, GBP4, and GBP6). GBP1-decorated Shigella organisms replicate but fail to form actin tails, leading to their intracellular aggregation. Consequentially, the wild type but not the triple-arginine GBP1 mutant restricts S. flexneri cell-to-cell spread. Furthermore, human-adapted S. flexneri, through the action of one its secreted effectors, IpaH9.8, is more resistant to GBP1 targeting than the non-human-adapted bacillus B. thailandensis. These studies reveal that human GBP1 uniquely functions as an intracellular “glue trap,” inhibiting the cytosolic movement of normally actin-propelled Gram-negative bacteria. In response to this powerful human defense program, S. flexneri has evolved an effective counterdefense to restrict GBP1 recruitment. IMPORTANCE Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host’s actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic “glue trap,” capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future. Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host’s actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic “glue trap,” capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future.


2021 ◽  
Vol 7 (10) ◽  
pp. 826
Author(s):  
Shlomit Dor ◽  
Dov Prusky ◽  
Livnat Afriat-Jurnou

Penicillium expansum is a necrotrophic wound fungal pathogen that secrets virulence factors to kill host cells including cell wall degrading enzymes (CWDEs), proteases, and mycotoxins such as patulin. During the interaction between P. expansum and its fruit host, these virulence factors are strictly modulated by intrinsic regulators and extrinsic environmental factors. In recent years, there has been a rapid increase in research on the molecular mechanisms of pathogenicity in P. expansum; however, less is known regarding the bacteria–fungal communication in the fruit environment that may affect pathogenicity. Many bacterial species use quorum-sensing (QS), a population density-dependent regulatory mechanism, to modulate the secretion of quorum-sensing signaling molecules (QSMs) as a method to control pathogenicity. N-acyl homoserine lactones (AHLs) are Gram-negative QSMs. Therefore, QS is considered an antivirulence target, and enzymes degrading these QSMs, named quorum-quenching enzymes, have potential antimicrobial properties. Here, we demonstrate that a bacterial AHL lactonase can also efficiently degrade a fungal mycotoxin. The mycotoxin is a lactone, patulin secreted by fungi such as P. expansum. The bacterial lactonase hydrolyzed patulin at high catalytic efficiency, with a kcat value of 0.724 ± 0.077 s−1 and KM value of 116 ± 33.98 μM. The calculated specific activity (kcat/KM) showed a value of 6.21 × 103 s−1M−1. While the incubation of P. expansum spores with the purified lactonase did not inhibit spore germination, it inhibited colonization by the pathogen in apples. Furthermore, adding the purified enzyme to P. expansum culture before infecting apples resulted in reduced expression of genes involved in patulin biosynthesis and fungal cell wall biosynthesis. Some AHL-secreting bacteria also express AHL lactonase. Here, phylogenetic and structural analysis was used to identify putative lactonase in P. expansum. Furthermore, following recombinant expression and purification of the newly identified fungal enzyme, its activity with patulin was verified. These results indicate a possible role for patulin and lactonases in inter-kingdom communication between fungi and bacteria involved in fungal colonization and antagonism and suggest that QQ lactonases can be used as potential antifungal post-harvest treatment.


2019 ◽  
Vol 57 (1) ◽  
pp. 231-251 ◽  
Author(s):  
Benoît Lacroix ◽  
Vitaly Citovsky

Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non- Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.


Sign in / Sign up

Export Citation Format

Share Document