Comparative Isolation of Cilia and Flagella from the Lamellibranch Mollusc, Aequipecten irradians

1973 ◽  
Vol 12 (2) ◽  
pp. 345-367
Author(s):  
R. W. LINCK

Gill cilia and sperm flagella from the lamellibranch mollusc Aequipecten irradians were compared with respect to their ultrastructures and adenosinetriphosphatase activities. Cilia were isolated from excised gills using 3 different solutions: twice-concentrated seawater, 10 % ethanol-10 mM CaCl2 and 60% glycerol. In each case deciliation occurs by the severance of the cilium at the junction of the transition zone and the basal body, and in each case the ciliary ultrastructure is maintained. Sperm flagella were purified by mechanical decapitation. Cilia and sperm flagella have similar fine structures, except that the matrix of the cilia contains substantially more electron-dense material than that of flagella. The ATPase activity of purified cilia is approximately 0.09,µmol P1/min/mg protein; that of flagella is 0.13. Ciliary and flagellar axonemes were prepared by repeated extraction of the membranes with 1% Triton X-100. Ciliary axonemes maintain their 9 + 2 cylindrical orientation, whereas flagellar axonemes often appear as opened or fragmented arrays of the 9 + 2 structure, due to the partial breakdown of the flagellar nexin fibres. A-subfibre arms which were obvious in whole organelles are rarely seen in axoneme preparations. Again the ciliary matrix is considerably more amorphous than in flagellar axonemes. The ATPase activities of ciliary and flagellar axonemes are 0.13 and 0.12 µmol P1/min/mg protein respectively; however, activities of ciliary axonemes may vary by a factor of 2, depending on the method of isolation. The difficulty in observing A-subfibre arms in cross-sections of ciliary and flagellar axonemes is discussed in terms of random, non-reinforcing arrangements of the dynein arms.

1973 ◽  
Vol 56 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Mark S. Mooseker ◽  
Lewis G. Tilney

The contractile axostyle is a ribbon-shaped organelle present in certain species of flagellates found in the hindgut of wood eating insects. This organelle propagates an undulatory wave whose motion, like flagella and cilia, is related to microtubules. Unlike the axoneme of cilia and flagella, however, the axostyle is composed of singlet microtubules linked together in parallel rows. Axostyles were isolated from Cryptocercus gut protozoa with Triton X-100. Normal motility of the isolated axostyle could be restored with adenosine triphosphate (ATP); the specific conditions necessary for this reactivation were essentially identical with those reported for the reactivation of isolated flagella or whole sperm. ATPase activity of the isolated axostyle was comparable to the values reported for ciliary or flagellar axonemes. The axostyle was reasonably specific for ATP. Most of the proteins of the isolated axostyle comigrated with proteins of the ciliary axoneme on sodium dodecyl sulfate (SDS) polyacrylamide gels (i e. equivalent molecular weights). These included the following: the higher molecular weight component of dynein, tubulin, linkage protein (nexin), and various secondary proteins. Evidence for dynein in the axostyle is presented and a model proposed to explain how repeated propagated waves can be generated.


1988 ◽  
Vol 107 (6) ◽  
pp. 2679-2688 ◽  
Author(s):  
W L Dentler

Cilia were isolated from Tetrahymena thermophila, extracted with Triton X-114, and the detergent-soluble membrane + matrix proteins separated into Triton X-114 aqueous and detergent phases. The aqueous phase polypeptides include a high molecular mass polypeptide previously identified as a membrane dynein, detergent-soluble alpha and beta tubulins, and numerous polypeptides distinct from those found in axonemes. Integral membrane proteins partition into the detergent phase and include two major polypeptides of 58 and 50 kD, a 49-kD polypeptide, and 5 polypeptides in relatively minor amounts. The major detergent phase polypeptides are PAS-positive and are phosphorylated in vivo. A membrane-associated ATPase, distinct from the dynein-like protein, partitions into the Triton X-114 detergent phase and contains nearly 20% of the total ciliary ATPase activity. The ATPase requires Mg++ or Ca++ and is not inhibited by ouabain or vanadate. This procedure provides a gentle and rapid technique to separate integral membrane proteins from those that may be peripherally associated with the matrix or membrane.


Author(s):  
Xudong Weng ◽  
Peter Rez

In electron energy loss spectroscopy, quantitative chemical microanalysis is performed by comparison of the intensity under a specific inner shell edge with the corresponding partial cross section. There are two commonly used models for calculations of atomic partial cross sections, the hydrogenic model and the Hartree-Slater model. Partial cross sections could also be measured from standards of known compositions. These partial cross sections are complicated by variations in the edge shapes, such as the near edge structure (ELNES) and extended fine structures (ELEXFS). The role of these solid state effects in the partial cross sections, and the transferability of the partial cross sections from material to material, has yet to be fully explored. In this work, we consider the oxygen K edge in several oxides as oxygen is present in many materials. Since the energy window of interest is in the range of 20-100 eV, we limit ourselves to the near edge structures.


Science ◽  
2021 ◽  
Vol 371 (6525) ◽  
pp. eabd4914
Author(s):  
Sudarshan Gadadhar ◽  
Gonzalo Alvarez Viar ◽  
Jan Niklas Hansen ◽  
An Gong ◽  
Aleksandr Kostarev ◽  
...  

Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo–electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.


1980 ◽  
Vol 89 (1) ◽  
pp. 81-83 ◽  
Author(s):  
Fred S. Herzon ◽  
Shirley Murphy

Kartagener's syndrome has been found to be associated with the immotile cilia syndrome (lack of dynein arms and defective radial spokes in cilia). The ultrastructure of cilia of a child with Kartagener's syndrome was examined and found to be within normal limits. The implications of this are discussed.


1977 ◽  
Vol 73 (1) ◽  
pp. 182-192 ◽  
Author(s):  
K Ogawa ◽  
D J Asai ◽  
C J Brokaw

Effects of an antiserum against native dynein 1 from sperm flagella of the sea urchin Strongylocentrotus purpuratus were compared with effects of an antiserum previously obtained against an ATPase-active tryptic fragment (fragment 1A) of dynein 1 from sperm flagella of the sea urchin, Anthocidaris crassispina. Both antisera precipitate dynein 1 and do not precipitate dynein 2. Only the fragment 1A antiserum precipitates fragment 1A and produces a measurable inhibition of dynein 1 ATPase activity. Both antisera inhibit the movement and the movement-coupled ATP dephosphorylation of reactivated spermatozoa. The inhibition of movement by the antiserum against dynein 1 is much less than by the antiserum against fragment 1A, suggesting that a specific interference with the active ATPase site may be required for effective inhibition of movement. Both antisera reduce the bend angle as well as the beat frequency of reactivated S. purpuratus spermatozoa, suggesting that the bend angle may depend on the activity of the dynein arms which generate active sliding.


1986 ◽  
Vol 64 (5) ◽  
pp. 448-455 ◽  
Author(s):  
Jacques Rembur ◽  
Pierre Landré ◽  
Arlette Nougarède

The validity of phase partition to obtain a substantial proportion of vesicles of plasmalemma origin from the microsomal fraction of pea epicotyl has been demonstrated. In the fractions enriched with plasma membranes, N-naphthyl phtalamic acid binding and β-glucan synthetase II activity, showed a yield of about 60% and an enrichment of 2.3 and 2.2, respectively, in comparison with the microsomal fraction. When such plasmalemmic vesicles are permabilized by Triton X-100, an intense Mg2+-ATPase activity is obtained in presence of K+ at acid as well as alkaline pH. Inhibition of Mg2+-ATPase by vanadate in presence of K+ and its variations in relation to pH were shown. Dicyclohexylcarbodiimide and diethylstilbestrol inhibit 40–55% of this enzymatic activity, both at acid and neutral pH. The data show a slight contamination of the plasmalemmic fraction by endomembranes and suggest an asymmetry of the two sides of the plasmalemma.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
N. Ahmadiniaz ◽  
V. M. Banda Guzmán ◽  
F. Bastianelli ◽  
O. Corradini ◽  
J. P. Edwards ◽  
...  

Abstract In the first part of this series, we employed the second-order formalism and the “symbol” map to construct a particle path-integral representation of the electron propagator in a background electromagnetic field, suitable for open fermion-line calculations. Its main advantages are the avoidance of long products of Dirac matrices, and its ability to unify whole sets of Feynman diagrams related by permutation of photon legs along the fermion lines. We obtained a Bern-Kosower type master formula for the fermion propagator, dressed with N photons, in terms of the “N-photon kernel,” where this kernel appears also in “subleading” terms involving only N − 1 of the N photons.In this sequel, we focus on the application of the formalism to the calculation of on-shell amplitudes and cross sections. Universal formulas are obtained for the fully polarised matrix elements of the fermion propagator dressed with an arbitrary number of photons, as well as for the corresponding spin-averaged cross sections. A major simplification of the on-shell case is that the subleading terms drop out, but we also pinpoint other, less obvious simplifications.We use integration by parts to achieve manifest transversality of these amplitudes at the integrand level and exploit this property using the spinor helicity technique. We give a simple proof of the vanishing of the matrix element for “all +” photon helicities in the massless case, and find a novel relation between the scalar and spinor spin-averaged cross sections in the massive case. Testing the formalism on the standard linear Compton scattering process, we find that it reproduces the known results with remarkable efficiency. Further applications and generalisations are pointed out.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Alexander Chien ◽  
Sheng Min Shih ◽  
Raqual Bower ◽  
Douglas Tritschler ◽  
Mary E Porter ◽  
...  

Intraflagellar transport (IFT) is essential for the elongation and maintenance of eukaryotic cilia and flagella. Due to the traffic jam of multiple trains at the ciliary tip, how IFT trains are remodeled in these turnaround zones cannot be determined by conventional imaging. Using PhotoGate, we visualized the full range of movement of single IFT trains and motors in Chlamydomonas flagella. Anterograde trains split apart and IFT complexes mix with each other at the tip to assemble retrograde trains. Dynein-1b is carried to the tip by kinesin-II as inactive cargo on anterograde trains. Unlike dynein-1b, kinesin-II detaches from IFT trains at the tip and diffuses in flagella. As the flagellum grows longer, diffusion delays return of kinesin-II to the basal body, depleting kinesin-II available for anterograde transport. Our results suggest that dissociation of kinesin-II from IFT trains serves as a negative feedback mechanism that facilitates flagellar length control in Chlamydomonas.


2021 ◽  
Vol 98 (6) ◽  
pp. 5-19
Author(s):  
VL.I. KOLCHUNOV ◽  
◽  
O.I. AL-HASHIMI ◽  
M.V. PROTCHENKO ◽  
◽  
...  

The authors developed a model for single reinforced concrete strips in block wedge and arches between inclined cracks and approximated rectangular cross-sections using small squares in matrix elements. From the analysis of the works of N.I. Karpenko and S.N. Karpenko the "nagel" forces in the longitudinal tensile reinforcement and crack slip , as a function of the opening width and concrete deformations in relation to the cosine of the angle . The experimental " nagel " forces and crack slip dependences for the connection between and in the form of an exponent for the reinforcement deformations and spacing are determined. The forces have been calculated for two to three cross-sections (single composite strips) of reinforced concrete structures. On the bases of accepted hypothesis, a new effect of reinforced concrete and a joint modulus in a strip of composite single local shear zone for the difference of mean relative linear and angular deformations of mutual displacements of concrete (or reinforcement) are developed. The hypothesis allows one to reduce the order of the system of differential equations of Rzhanitsyn and to obtain in each joint the total angular deformations of concrete and the "nagel" effect of reinforcement. The curvature of the composite bars has a relationship from the total bending moment of the bars to the sum of the rigidities. The stiffness physical characteristics of the matrix from the compressed concrete area and the working reinforcement are obtained in a system of equations of equilibrium and deformation, as well as physical equations.


Sign in / Sign up

Export Citation Format

Share Document