Increase in macromolecular amounts during the cell cycle of Tetrahymena: a contribution to cell cycle control

1979 ◽  
Vol 37 (1) ◽  
pp. 117-124
Author(s):  
G. Cleffmann ◽  
W.O. Reuter ◽  
H.M. Seyfert

Increases in RNA, protein and cell size were determined cytophotometrically during the cell division cycle of Tetrahymena. For these parameters different patterns were found. RNA accumulates slowly during G1 period and faster during macronuclear S. This agrees with the changing uridine incorporation rate which is at least partly related to the varying macronuclear DNA amount. Increases in protein content and cell size occur mainly during G1 and G2. This pattern was confirmed by determining the RNA: protein ratio in individual cells. It is minimal at the end of the G1 period. These findings and evidence from the literature suggest that initiation of DNA replication is under negative control by the relative RNA content of the cell.

Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 63-80 ◽  
Author(s):  
T A Weinert ◽  
L H Hartwell

Abstract In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G2 phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G2 phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G2 phase.


Science ◽  
2020 ◽  
Vol 369 (6504) ◽  
pp. eaaz2532 ◽  
Author(s):  
Gabriel Tarrason Risa ◽  
Fredrik Hurtig ◽  
Sian Bray ◽  
Anne E. Hafner ◽  
Lena Harker-Kirschneck ◽  
...  

Sulfolobus acidocaldarius is the closest experimentally tractable archaeal relative of eukaryotes and, despite lacking obvious cyclin-dependent kinase and cyclin homologs, has an ordered eukaryote-like cell cycle with distinct phases of DNA replication and division. Here, in exploring the mechanism of cell division in S. acidocaldarius, we identify a role for the archaeal proteasome in regulating the transition from the end of one cell cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome and show that its degradation triggers division by allowing constriction of the CdvB1:CdvB2 ESCRT-III division ring. These findings offer a minimal mechanism for ESCRT-III–mediated membrane remodeling and point to a conserved role for the proteasome in eukaryotic and archaeal cell cycle control.


2009 ◽  
Vol 192 (4) ◽  
pp. 1058-1065 ◽  
Author(s):  
Ole Michelsen ◽  
Flemming G. Hansen ◽  
Bjarne Albrechtsen ◽  
Peter Ruhdal Jensen

ABSTRACT Bacteria are normally haploid, maintaining one copy of their genome in one circular chromosome. We have examined the cell cycle of laboratory strains of Lactococcus lactis, and, to our surprise, we found that some of these strains were born with two complete nonreplicating chromosomes. We determined the cellular content of DNA by flow cytometry and by radioactive labeling of the DNA. These strains thus fulfill the criterion of being diploid. Several dairy strains were also found to be diploid while a nondairy strain and several other dairy strains were haploid in slow-growing culture. The diploid and haploid strains differed in their sensitivity toward UV light, in their cell size, and in their D period, the period between termination of DNA replication and cell division.


2006 ◽  
Vol 188 (6) ◽  
pp. 2244-2253 ◽  
Author(s):  
Rasmus B. Jensen

ABSTRACT Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication and movement of one of the newly replicated origins to the opposite pole of the cell, indicating the absence of cohesion between the newly replicated origin-proximal parts of the Caulobacter chromosome. The terminus region of the chromosome becomes located at the invaginating septum in predivisional cells, and the completely replicated terminus regions stay associated with each other after chromosome replication is completed, disassociating very late in the cell cycle shortly before the final cell division event. Invagination of the cytoplasmic membrane occurs earlier than separation of the replicated terminus regions and formation of separate nucleoids, which results in trapping of a chromosome on either side of the cell division septum, indicating that there is not a nucleoid exclusion phenotype.


1999 ◽  
Vol 19 (7) ◽  
pp. 4888-4896 ◽  
Author(s):  
Guy Oshiro ◽  
Julia C. Owens ◽  
Yiqun Shellman ◽  
Robert A. Sclafani ◽  
Joachim J. Li

ABSTRACT In Saccharomyces cerevisiae, the heteromeric kinase complex Cdc7p-Dbf4p plays a pivotal role at replication origins in triggering the initiation of DNA replication during the S phase. We have assayed the kinase activity of endogenous levels of Cdc7p kinase by using a likely physiological target, Mcm2p, as a substrate. Using this assay, we have confirmed that Cdc7p kinase activity fluctuates during the cell cycle; it is low in the G1 phase, rises as cells enter the S phase, and remains high until cells complete mitosis. These changes in kinase activity cannot be accounted for by changes in the levels of the catalytic subunit Cdc7p, as these levels are constant during the cell cycle. However, the fluctuations in kinase activity do correlate with levels of the regulatory subunit Dbf4p. The regulation of Dbf4p levels can be attributed in part to increased degradation of the protein in G1 cells. This G1-phase instability is cdc16 dependent, suggesting a role of the anaphase-promoting complex in the turnover of Dbf4p. Overexpression of Dbf4p in the G1 phase can partially overcome this elevated turnover and lead to an increase in Cdc7p kinase activity. Thus, the regulation of Dbf4p levels through the control of Dbf4p degradation has an important role in the regulation of Cdc7p kinase activity during the cell cycle.


2021 ◽  
Author(s):  
Mathilde Guzzo ◽  
Allen G. Sanderlin ◽  
Lennice K. Castro ◽  
Michael T. Laub

AbstractIn every organism, the cell cycle requires the execution of multiple cellular processes in a strictly defined order. However, the mechanisms used to ensure such order remain poorly understood, particularly in bacteria. Here, we show that the activation of the essential CtrA signaling pathway that triggers cell division in Caulobacter crescentus is intrinsically coupled to the successful initiation of DNA replication via the physical translocation of a newly-replicated chromosome, powered by the ParABS system. We demonstrate that ParA accumulation at the new cell pole during chromosome segregation recruits ChpT, an intermediate component of the CtrA signaling pathway. ChpT is normally restricted from accessing the selective PopZ polar microdomain until the new chromosome and ParA arrive. Consequently, any disruption to DNA replication initiation prevents the recruitment of ChpT and, in turn, cell division. Collectively, our findings reveal how major cell-cycle events are coordinated in Caulobacter and, importantly, how the physical translocation of a chromosome triggers an essential signaling pathway.


2019 ◽  
Author(s):  
Clement Gallay ◽  
Stefano Sanselicio ◽  
Mary E. Anderson ◽  
Young Min Soh ◽  
Xue Liu ◽  
...  

SummaryMost bacteria replicate and segregate their DNA concomitantly while growing, before cell division takes place. How bacteria synchronize these different cell cycle events to ensure faithful chromosome inheritance is poorly understood. Here, we identified a conserved and essential protein in pneumococci and related Firmicutes named CcrZ (for Cell Cycle Regulator protein interacting with FtsZ) that couples cell division with DNA replication by controlling the activity of the master initiator of DNA replication, DnaA. The absence of CcrZ causes mis-timed and reduced initiation of DNA replication, which subsequently results in aberrant cell division. We show that CcrZ from Streptococcus pneumoniae directly interacts with the cytoskeleton protein FtsZ to place it in the middle of the newborn cell where the DnaA-bound origin is positioned. Together, this work uncovers a new mechanism for the control of the bacterial cell cycle in which CcrZ controls DnaA activity to ensure that the chromosome is replicated at the right time during the cell cycle.


1979 ◽  
Vol 35 (1) ◽  
pp. 25-40
Author(s):  
R.S. Fraser ◽  
P. Nurse

In the fission yeast Schizosaccharomyces pombe, a series of diploid mutants divides at smaller cell sizes than wild type. In these smaller strains, the mean gene concentration (defined by previous authors as the DNA to protein ratio) is higher than in wild type. Such an increase in gene concentration should also increase the concentration of those components such as messenger and ribosomal RNA, whose rate of synthesis is determined by gene dosage. We show that the mean concentrations of these 2 RNA species in the small cells are not increased, but are the same as in wild type. The small mutant cells are thus able to compensate for changes in gene concentration. This compensation is shown to operate through differences in the patterns of synthesis of RNA during the cell cycle. In all the strains of the diploid series, the rates of synthesis of messenger and ribosomal RNA double as steps once in each cell cycle. The timings of the steps in the cell cycle appear to be cell-size related, since the smaller the cell at division, the later are the steps in the cell cycle. In contrast, there is comparatively little variation in the timing of DNA replication in the cycles of cells of different sizes. We propose that after DNA replication, there is a delay before doubling in the rate of transcription. Such a cell mass-related delay is all that is required to compensate for increased gene concentration, and results in the same mean functional DNA concentration in all strains. This mechanism will maintain the same mean messenger and ribosomal RNA concentrations in cells dividing at different sizes. Ways in which the cell size-related control over transcription may operate are discussed.


2019 ◽  
Author(s):  
M.A. White ◽  
E. Darmon ◽  
M.A. Lopez-Vernaza ◽  
D.R.F. Leach

AbstractTo prevent the transmission of damaged genomic material between generations, cells require a system for accommodating DNA repair within their cell cycles. We have previously shown that Escherichia coli cells subject to a single, repairable site-specific DNA double-strand break (DSB) per DNA replication cycle reach a new average cell length, with a negligible effect on population growth rate. We show here that this new cell size distribution is caused by a DSB repair-dependent delay in completion of cell division. This delay occurs despite unperturbed cell size regulated initiation of both chromosomal DNA replication and cell division. Furthermore, despite DSB repair altering the profile of DNA replication across the genome, the time required to complete chromosomal duplication is invariant. The delay in completion of cell division is accompanied by a DSB repair-dependent delay in individualization of sister nucleoids. We suggest that DSB repair events create inter-sister connections that persist until those chromosomes are separated by a closing septum.Author SummaryThe bacterium Escherichia coli has a remarkable cell cycle where overlapping rounds of DNA replication can occur in a single generation between cell birth and division. This implies a complex coordination network between growth, genome duplication and cell division to ensure that the right number of genomes are created and distributed to daughter cells at all growth rates. This network must be robust to a number of unpredictable challenges. One such challenge is broken DNA, something that in E. coli is estimated to occur in ~20% of cell division cycles. In this work we perturb the E. coli cell cycle by elevating the frequency of repairable DNA double-strand breaks to determine which parameters of the cell cycle are conserved and which are changed. Our results demonstrate that this perturbation does not alter the average cell size at initiation of DNA replication or initiation of cell division. Furthermore, it does not alter the time taken to replicate the genome or the generation time. However, it does delay the segregation of the DNA to daughter cells and the completion of cell division explaining the increase in average cell size observed previously.


Author(s):  
Clement Gallay ◽  
Stefano Sanselicio ◽  
Mary E. Anderson ◽  
Young Min Soh ◽  
Xue Liu ◽  
...  

AbstractMost bacteria replicate and segregate their DNA concomitantly while growing, before cell division takes place. How bacteria synchronize these different cell cycle events to ensure faithful chromosome inheritance by daughter cells is poorly understood. Here, we identify Cell Cycle Regulator protein interacting with FtsZ (CcrZ) as a conserved and essential protein in pneumococci and related Firmicutes such as Bacillus subtilis and Staphylococcus aureus. CcrZ couples cell division with DNA replication by controlling the activity of the master initiator of DNA replication, DnaA. The absence of CcrZ causes mis-timed and reduced initiation of DNA replication, which subsequently results in aberrant cell division. We show that CcrZ from Streptococcus pneumoniae interacts directly with the cytoskeleton protein FtsZ, which places CcrZ in the middle of the newborn cell where the DnaA-bound origin is positioned. This work uncovers a mechanism for control of the bacterial cell cycle in which CcrZ controls DnaA activity to ensure that the chromosome is replicated at the right time during the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document