Polygonal networks in living chick embryonic cells

1981 ◽  
Vol 52 (1) ◽  
pp. 55-69
Author(s):  
G.W. Ireland ◽  
F.C. Voon

Regular polygonal networks have been found in explants and dissociated cells of early chick embryos. These networks are readily observable in live cells with phase-contrast optics thus allowing time-lapse cinemicroscopy. They consisted of a regular pattern of nodes and radiating struts found predominantly in the lamelliplasm of the free edges of the cells bordering explants. At the outer edge, the network was terminated by radial struts associated with substrate-attached retraction processes whilst toward the centre of the cells it faded out. The network was also associated with stress fibres running across the cell and with microextensions on the dorsal surface. Even within one cell the network varied in size. Time-lapse films showed that microvilli were protruded from the dorsal surface over the nodes. Although the cells containing the networks were poorly motile the network itself was a mobile structure. Many explants from regions differing in prospective fates developed these networks after 2–4 days in culture. They appeared earlier in the smaller less yolky cells of definitive endoblast and epiblast. Experiments with dissociated and reaggregated cells confirmed their occurrence mainly in free edges of cells. The relationship between these networks seen in living chick embryo cells and those seen in other cell types using immunofluorescent techniques is discussed and a mechanism is proposed for their formation.

1975 ◽  
Vol 18 (3) ◽  
pp. 385-403
Author(s):  
M.S. Steinberg ◽  
D.R. Garrod

Two problems are raised concerning the movement of cells during tissue-specific sorting-out of chick embryo cells in mixed aggregates. (i) A possible expectation from the hypothesis of ‘contact inhibition’ is that cells which are entirely surrounded by other cells in monolayer should be held stationary. Cells within solid aggregates, being totally surrounded by others, might also not be expected to move. How is it then that cell movement takes place within solid aggregates during sorting-out? (ii) Are the movements of cells within sorting aggregates ‘passive’, being driven by adhesive differentials or ‘active’, being merely guided by such differentials? In order to study these questions, sorting out experiments with chick embryonic limb bud mesenchyme and liver cells were carried out in monolayer culture, permitting direct observation of cell movements. Cell behavior was observed by time-lapse cinematography. Sorting-out of these cells in monolayer began before and continued after the cells had spread to confluency. During sorting, liver cells showed ruffing activity even when they appeared to be totally surrounded by other cells. Both cell types showed contact inhibition as judged by the criterion of monolayering, for they did not move over each other but remained attached to the substratum. Yet the cells in the confluent monolayer were not immobilized. Because of this, we suggest that the observed restraint against overlapping did not result from an inhibition of movement. Several considerations, detailed in the text, suggest that cell movement during sorting-out involve active locomotion. Previous work suggest that sorting-out configurations are determined by the relative intensities of intercellular adhesive strengths, the more cohesive of 2 cell populations tending to adopt the internal position. While limb bud cells form internal islands surrounded by liver cells in solid aggregates, the reverse was found to be the case in these monolayers. This suggests that, in the monolayer, limb bud cohesiveness is depressed relative to liver cell cohesiveness. This is consistent with the observation that the limb bud cells flattened themselves markedly against the substratum, significantly decreasing their area of mutual apposition.


2005 ◽  
Vol 16 (3) ◽  
pp. 1056-1070 ◽  
Author(s):  
Sandra E. Encalada ◽  
John Willis ◽  
Rebecca Lyczak ◽  
Bruce Bowerman

During mitosis, chromosome segregation is regulated by a spindle checkpoint mechanism. This checkpoint delays anaphase until all kinetochores are captured by microtubules from both spindle poles, chromosomes congress to the metaphase plate, and the tension between kinetochores and their attached microtubules is properly sensed. Although the spindle checkpoint can be activated in many different cell types, the role of this regulatory mechanism in rapidly dividing embryonic animal cells has remained controversial. Here, using time-lapse imaging of live embryonic cells, we show that chemical or mutational disruption of the mitotic spindle in early Caenorhabditis elegans embryos delays progression through mitosis. By reducing the function of conserved checkpoint genes in mutant embryos with defective mitotic spindles, we show that these delays require the spindle checkpoint. In the absence of a functional checkpoint, more severe defects in chromosome segregation are observed in mutants with abnormal mitotic spindles. We also show that the conserved kinesin CeMCAK, the CENP-F-related proteins HCP-1 and HCP-2, and the core kinetochore protein CeCENP-C all are required for this checkpoint. Our analysis indicates that spindle checkpoint mechanisms are functional in the rapidly dividing cells of an early animal embryo and that this checkpoint can prevent chromosome segregation defects during mitosis.


1997 ◽  
Vol 136 (3) ◽  
pp. 531-544 ◽  
Author(s):  
Mark Fricker ◽  
Michael Hollinshead ◽  
Nick White ◽  
David Vaux

The nuclear envelope consists of a doublemembraned extension of the rough endoplasmic reticulum. In this report we describe long, dynamic tubular channels, derived from the nuclear envelope, that extend deep into the nucleoplasm. These channels show cell-type specific morphologies ranging from single short stubs to multiple, complex, branched structures. Some channels transect the nucleus entirely, opening at two separate points on the nuclear surface, while others terminate at or close to nucleoli. These channels are distinct from other topological features of the nuclear envelope, such as lobes or folds. The channel wall consists of two membranes continuous with the nuclear envelope, studded with features indistinguishable from nuclear pore complexes, and decorated on the nucleoplasmic surface with lamins. The enclosed core is continuous with the cytoplasm, and the lumenal space between the membranes contains soluble ER-resident proteins (protein disulphide isomerase and glucose-6-phosphatase). Nuclear channels are also found in live cells labeled with the lipophilic dye DiOC6. Time-lapse imaging of DiOC6-labeled cells shows that the channels undergo changes in morphology and spatial distribution within the interphase nucleus on a timescale of minutes. The presence of a cytoplasmic core and nuclear pore complexes in the channel walls suggests a possible role for these structures in nucleo–cytoplasmic transport. The clear association of a subset of these structures with nucleoli would also be consistent with such a transport role.


2014 ◽  
Author(s):  
Matthew E Berginski ◽  
Sarah J Creed ◽  
Shelly Cochran ◽  
David W Roadcap ◽  
James E Bear ◽  
...  

Multiple cell types form specialized protein complexes, podosomes or invadopodia and collectively referred to as invadosomes, which are used by the cell to actively degrade the surrounding extracellular matrix. Due to their potential importance in both healthy physiology as well as in pathological conditions such as cancer, the characterization of these structures has been of increasing interest. Following early descriptions of invadopodia, assays were developed which labelled the matrix underneath metastatic cancer cells allowing for the assessment of invadopodia activity in motile cells. However, characterization of invadopodia using these methods has traditionally been done manually with time-consuming and potentially biased quantification methods, limiting the number of experiments and the quantity of data that can be analysed. We have developed a system to automate the segmentation, tracking and quantification of invadopodia in time-lapse fluorescence image sets at both the single invadopodia level and whole cell level. We rigorously tested the ability of the method to detect changes in invadopodia formation and dynamics through the use of well-characterized small molecule inhibitors, with known effects on invadopodia. Our results demonstrate the ability of this analysis method to quantify changes in invadopodia formation from live cell imaging data in a high throughput, automated manner.


2014 ◽  
Author(s):  
Matthew E Berginski ◽  
Sarah J Creed ◽  
Shelly Cochran ◽  
David W Roadcap ◽  
James E Bear ◽  
...  

Multiple cell types form specialized protein complexes, podosomes or invadopodia and collectively referred to as invadosomes, which are used by the cell to actively degrade the surrounding extracellular matrix. Due to their potential importance in both healthy physiology as well as in pathological conditions such as cancer, the characterization of these structures has been of increasing interest. Following early descriptions of invadopodia, assays were developed which labelled the matrix underneath metastatic cancer cells allowing for the assessment of invadopodia activity in motile cells. However, characterization of invadopodia using these methods has traditionally been done manually with time-consuming and potentially biased quantification methods, limiting the number of experiments and the quantity of data that can be analysed. We have developed a system to automate the segmentation, tracking and quantification of invadopodia in time-lapse fluorescence image sets at both the single invadopodia level and whole cell level. We rigorously tested the ability of the method to detect changes in invadopodia formation and dynamics through the use of well-characterized small molecule inhibitors, with known effects on invadopodia. Our results demonstrate the ability of this analysis method to quantify changes in invadopodia formation from live cell imaging data in a high throughput, automated manner.


2019 ◽  
Author(s):  
Jonathan S. Packer ◽  
Qin Zhu ◽  
Chau Huynh ◽  
Priya Sivaramakrishnan ◽  
Elicia Preston ◽  
...  

AbstractC. elegans is an animal with few cells, but a striking diversity of cell types. Here, we characterize the molecular basis for their specification by profiling the transcriptomes of 84,625 single embryonic cells. We identify 284 terminal and pre-terminal cell types, mapping most single cell transcriptomes to their exact position in C. elegans’ invariant lineage. We use these annotations to perform the first quantitative analysis of the relationship between lineage and the transcriptome for a whole organism. We find that a strong lineage-transcriptome correlation in the early embryo breaks down in the final two cell divisions as cells adopt their terminal fates and that most distinct lineages that produce the same anatomical cell type converge to a homogenous transcriptomic state. Users can explore our data with a graphical application “VisCello”.


2021 ◽  
Author(s):  
Jinho Choi ◽  
Hye-Jin Kim ◽  
Gyuhyeon Sim ◽  
Sumin Lee ◽  
Wei Sun Park ◽  
...  

Visualisations and analyses of cellular and subcellular organelles in biological cells is crucial for the study of cell biology. However, existing imaging methods require the use of exogenous labelling agents, which prevents the long-time assessments of live cells in their native states. Here we propose and experimentally demonstrate three-dimensional segmentation of subcellular organelles in unlabelled live cells, exploiting a 3D U-Net-based architecture. We present the high-precision three-dimensional segmentation of cell membrane, nucleus membrane, nucleoli, and lipid droplets of various cell types. Time-lapse analyses of dynamics of activated immune cells are also analysed using label-free segmentation.


Development ◽  
1980 ◽  
Vol 58 (1) ◽  
pp. 231-249
Author(s):  
E. Lehtonen

The cleavage behaviour of cells isolated from 1- to 8-cell-stage mouse embryos was studied with time-lapse video equipment; changes in cellular dimensions and their timing were recorded. The division of an isolated cell results in the formation of a twin-cell pair. The divisions of these two cells were always asynchronous. In each division the volume of a daughter cell was approximately half of that of the parental cell but its apparent surface area was 59-65% of that of the parental cell. Consequently, the ratio of apparent surface area to volume increased in each division by 25-30%. The most noticeable changes were observed in the relationship between the two daughter cells of each division. After cytokinesis, the intercellular contact area gradually increased during the following cell cycle in the 2/8- and 2/16-cell pairs, whereas it hardly changed in the 2/2- and 2/4-cell pairs. The comparison of the behaviour of the daughter cells on different substrates suggested that the zona pellucida and the mid body might have a role in the contact development at the early stages. Scanning electron microscopy was used for studying changes in the density of cell surface microvilli in an attempt to explain how the cells regulate their intercellular contacts.


2017 ◽  
Author(s):  
◽  
Tuan Anh Trieu

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Different cell types of an organism have the same DNA sequence, but they can function differently because their difference in 3D organization allows them to express different genes and has different cellular functions. Understanding the 3D organization of the genome is the key to understand functions of the cell. Chromosome conformation capture techniques like Hi-C and TCC that can capture interactions between proximal chromosome fragments have allowed the study of 3D genome organization in high resolution and high through-put. My work focuses on developing computational methods to reconstruct 3D genome structures from Hi-C data. I presented three methods to reconstruct 3D genome and chromosome structures. The first method can build 3D genome models from soft constraints of contacts and non-contacts. This method utilizes the concept of contact and non-contact to reconstruct 3D models without translating interaction frequencies into physical distances. The translation is commonly used by other methods even though it makes a strong assumption about the relationship between interaction frequencies and physical distances. In synthetic dataset, when the relationship was known, my method performed comparably with other methods assuming the relationship. This shows the potential of my method for real Hi-C datasets where the relationship is unknown. The limitation of the method is that it has parameters requiring manual adjustment. I developed the second method to reconstruct 3D genome models. This method utilizes a commonly used function to translate interaction frequencies to physical distances to build 3D models. I proposed a novel way to derive soft constraints to handle inconsistency in the data and to make the method robust. Building 3D models at high resolution is a more challenging problem as the number of constraints is small and the feasible space is larger. I introduced a third method to build 3D chromosome models at high resolution. The method reconstructs models at low resolution and then uses them to guide the reconstruction of models at high resolution. The last part of my work is the development of a comprehensive tool with intuitive graphic user interface to analyze Hi-C data, reconstruct and analyze 3D models.


1987 ◽  
Vol 88 (4) ◽  
pp. 521-526
Author(s):  
R.M. Brown ◽  
C.A. Middleton

The behaviour in culture of dissociated epithelial cells from chick embryo pigmented retina epithelium (PRE), corneal epithelium (CE) and epidermis has been studied using time-lapse cinematography. The analysis concentrated on the contact behaviour of 60 previously isolated cells of each type during a 24 h period starting 3.5 h after the cells were plated out. During the period analysed the number of isolated cells in cultures of all three types gradually decreased as they became incorporated into islands and sheets of cells. However, there were significant differences in behaviour between the cell types during the establishment of these sheets and islands. In PRE cell cultures, islands of cells developed because, throughout the period of analysis, collisions involving previously isolated cells almost invariably resulted in the development of a stable contact. Once having established contact with another cell these cells rarely broke away again to become reisolated. In contrast the contacts formed between colliding CE and epidermal cells were, at least initially, much less stable and cells of both these types were frequently seen to break away and become reisolated after colliding with other cells. Sheets and islands of cells eventually developed in these cultures because the frequency with which isolated cells become reisolated decreased with increasing time in culture. The possible reasons underlying the different behaviour of PRE cells, when compared with that of CE and epidermal cells, are discussed. It is suggested that the decreasing tendency of isolated CE and epidermal cells to become reisolated may be related to the formation of desmosomes.


Sign in / Sign up

Export Citation Format

Share Document