SWELLING BEHAVIOUR OF THE CATCH CONNECTIVE TISSUE IN HOLOTHURIAN BODY WALL

1989 ◽  
Vol 143 (1) ◽  
pp. 71-85 ◽  
Author(s):  
JOHN P. EYLERS ◽  
ALAN R. GREENBERG

Swelling tests in a series of isotonic and isoionic solutions of varying calcium-tosodium ratios were conducted on isolated dermal connective tissue of the holothurian Thyonella gemmata Verrill. The tissue swelled rapidly and attained a maximum volume increase of approximately 40 % when transferred from distilled water to NaCl solution; however, the volume did not change significantly in isotonic CaCl2 solution. At Ca2+/Na+ ratios ≤0.04 the tissue swelled at its maximum rate. The rate decreased with increasing calcium concentration, until at Ca2+/Na+ ≥0.40 no detectable swelling occurred. Similar results were obtained for Pentacta pygmaea Goldfuss. When tissues previously swollen in NaCl were placed in CaC2, the volume decreased significantly. Uniaxial tensile tests indicated that the elastic modulus of the tissue was much greater in Ca2+ solutions than in Na+ solutions. We hypothesize that dermal stiffness in holothurians is regulated by cation-sensitive crosslinks

Author(s):  
Ángel Ortillés ◽  
Elena Lanchares ◽  
Jose Á Cristóbal ◽  
Begoña Calvo

The aim of this study was to assess the use of 2% HPMC during in vitro uniaxial tensile tests, with corneal strips immediately obtained or after storing the eyes for 24 h in 0.9% NaCl solution at 4 ℃. The purpose was to establish a standardized procedure to prevent phenomena which can modify the mechanical properties of the tissue. Rabbit eyes were divided into four groups. Group A had seven eyes that were preserved in NaCl solution for 24 h before testing. Group B had seven eyes that were immediately tested. In both groups, to prevent both swelling and dehydration, 2% hydroxypropyl methylcellulose (2% HPMC) was applied. Group C had seven eyes that were preserved in NaCl solution for 24 h before testing. Group D had seven eyes that were immediately tested. In both groups, HPMC was not applied. Regarding the mechanical response, groups with HPMC showed similar Cauchy stress–stretch curves and there were no statistically significant differences at 5%, 10% and 15% strain between them, which mean that both showed similar mechanical behavior. The same result was obtained between groups without HPMC. However, for coupled groups with and without HPMC, statistically significant differences at 10% and 15% strain were observed. On the other hand, when grouped by storage time, statistically significant differences were found between groups that had eyes preserved for 24 h with and without HPMC, respectively, as well as between groups immediately tested with and without HPMC, respectively, at 15% strain. Nevertheless, if coupled groups were considered, between groups that were preserved for 24 h in NaCl before testing and groups that were immediately tested, no statistically significant differences were obtained. In addition, the Cauchy stress–stretch curves of groups without HPMC showed a decreasing slope of the linear part (strain > 8%) of the graph during the experiment. In summary, the use of HPMC during the handling of the tissue from excision to testing seems to prevent both swelling and dehydration.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 171
Author(s):  
Fatim-Zahra Mouhib ◽  
Fengyang Sheng ◽  
Ramandeep Mandia ◽  
Risheng Pei ◽  
Sandra Korte-Kerzel ◽  
...  

Binary and ternary Mg-1%Er/Mg-1%Er-1%Zn alloys were rolled and subsequently subjected to various heat treatments to study texture selection during recrystallization and following grain growth. The results revealed favorable texture alterations in both alloys and the formation of a unique ±40° transvers direction (TD) recrystallization texture in the ternary alloy. While the binary alloy underwent a continuous alteration of its texture and grain size throughout recrystallization and grain growth, the ternary alloy showed a rapid rolling (RD) to transvers direction (TD) texture transition occurring during early stages of recrystallization. Targeted electron back scatter diffraction (EBSD) analysis of the recrystallized fraction unraveled a selective growth behavior of recrystallization nuclei with TD tilted orientations that is likely attributed to solute drag effect on the mobility of specific grain boundaries. Mg-1%Er-1%Zn additionally exhibited a stunning microstructural stability during grain growth annealing. This was attributed to a fine dispersion of dense nanosized particles in the matrix that impeded grain growth by Zener drag. The mechanical properties of both alloys were determined by uniaxial tensile tests combined with EBSD assisted slip trace analysis at 5% tensile strain to investigate non-basal slip behavior. Owing to synergic alloying effects on solid solution strengthening and slip activation, as well as precipitation hardening, the ternary Mg-1%Er-1%Zn alloy demonstrated a remarkable enhancement in the yield strength, strain hardening capability, and failure ductility, compared with the Mg-1%Er alloy.


2021 ◽  
pp. 073168442110204
Author(s):  
Bin Yang ◽  
Yingying Shang ◽  
Zeliang Yu ◽  
Minger Wu ◽  
Youji Tao ◽  
...  

In recent years, coated fabrics have become the major material used in membrane structures. Due to the special structure of base layer and mechanical properties, coated biaxial warp-knitted fabrics are increasingly applied in pneumatic structures. In this article, the mechanical properties of coated biaxial warp-knitted fabrics are investigated comprehensively. First, off-axial tensile tests are carried out in seven in-plane directions: 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Based on the stress–strain relationship, tensile strengths are obtained and failure modes are studied. The adaptability of Tsai–Hill criterion is analyzed. Then, the uniaxial tensile creep test is performed under 24-h sustained load and the creep elongation is calculated. Besides, tearing strengths in warp and weft directions are obtained by tearing tests. Finally, the biaxial tensile tests under five different load ratios of 1:1, 2:1, 1:2, 1:0, and 0:1 are carried out, and the elastic constants and Poisson’s ratio are calculated using the least squares method based on linear orthotropic assumption. Moreover, biaxial specimens under four load ratios of 3:1, 1:3, 5:1, and 1:5 are further tensile tested to verify the adaptability of linear orthotropic model. These experimental data offer a deeper and comprehensive understanding of mechanical properties of coated biaxial warp-knitted fabrics and could be conveniently adopted in structural design.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Rongchuang Chen ◽  
Shiyang Zhang ◽  
Xianlong Liu ◽  
Fei Feng

To investigate the effect of hot working parameters on the flow behavior of 300M steel under tension, hot uniaxial tensile tests were implemented under different temperatures (950 °C, 1000 °C, 1050 °C, 1100 °C, 1150 °C) and strain rates (0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1). Compared with uniaxial compression, the tensile flow stress was 29.1% higher because dynamic recrystallization softening was less sufficient in the tensile stress state. The ultimate elongation of 300M steel increased with the decrease of temperature and the increase of strain rate. To eliminate the influence of sample necking on stress-strain relationship, both the stress and the strain were calibrated using the cross-sectional area of the neck zone. A constitutive model for tensile deformation was established based on the modified Arrhenius model, in which the model parameters (n, α, Q, ln(A)) were described as a function of strain. The average deviation was 6.81 MPa (6.23%), showing good accuracy of the constitutive model.


2014 ◽  
Vol 622-623 ◽  
pp. 273-278 ◽  
Author(s):  
Marion Merklein ◽  
Sebastian Suttner ◽  
Adam Schaub

The requirement for products to reduce weight while maintaining strength is a major challenge to the development of new advanced materials. Especially in the field of human medicine or aviation and aeronautics new materials are needed to satisfy increasing demands. Therefore the titanium alloy Ti-6Al-4V with its high specific strength and an outstanding corrosion resistance is used for high and reliable performance in sheet metal forming processes as well as in medical applications. Due to a meaningful and accurate numerical process design and to improve the prediction accuracy of the numerical model, advanced material characterization methods are required. To expand the formability and to skillfully use the advantage of Ti-6Al-4V, forming processes are performed at elevated temperatures. Thus the investigation of plastic yielding at different stress states and at an elevated temperature of 400°C is presented in this paper. For this reason biaxial tensile tests with a cruciform shaped specimen are realized at 400°C in addition to uniaxial tensile tests. Moreover the beginning of plastic yielding is analyzed in the first quadrant of the stress space with regard to complex material modeling.


2015 ◽  
Vol 732 ◽  
pp. 161-164 ◽  
Author(s):  
Jan Vesely ◽  
Lukas Horny ◽  
Hynek Chlup ◽  
Milos Beran ◽  
Milan Krajicek ◽  
...  

The effects of the polyvinyl alcohol (PVA) concentration on mechanical properties of hydrogels based on blends of native or denatured collagen / PVA were examined. Blends of PVA with collagen were obtained by mixing the solutions in different ratios, using glycerol as a plasticizer. The solutions were cast on polystyrene plates and the solvent was allowed to evaporate at room temperature. Uniaxial tensile tests were performed in order to obtain the initial modulus of elasticity (up to deformation 0.1), the ultimate tensile stress and the deformation at failure of the material in the water-saturated hydrogel form. It was found that the material was elastic and the addition of PVA helped to enhance both the ultimate tensile stress and modulus of elasticity of the films. Samples prepared from denaturated collagen showed the higher ultimate tensile stress and the deformation at failure in comparison with those prepared from native collagen. The results suggest that we could expect successful application of the collagen/PVA biomaterial for tissue engineering.


2015 ◽  
Vol 35 (4) ◽  
pp. 377-390 ◽  
Author(s):  
Andrzej Ambroziak

Abstract This article describes the laboratory tests necessary to identify the mechanical properties of the polyvinylidene fluoride (PVDF)-coated fabrics named Precontraint 1202S and Precontraint 1302S. First, a short survey of the literature concerning the description of coated woven fabrics is presented. Second, the material parameters for PVDF-coated fabrics are specified on the basis of biaxial tensile tests. A comparison of the 1:1 biaxial and the uniaxial tensile tests results is also given. Additionally, biaxial cyclic tests were performed to observe the change of immediate mechanical properties under cyclic load. The article is aimed as an introduction to a comprehensive investigation of the mechanical properties of coated fabrics.


2021 ◽  
Vol 1026 ◽  
pp. 65-73
Author(s):  
Kai Zhu ◽  
Hong Wei Yan

Both microstructure inhomogeneity and mechanical property diversity along the thickness direction in rolled thick aluminum plates have been considered to have a remarkable impact on the performance and properties of the products made from the plates. In this study, scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) characterizations of microstructure and texture types along the thickness directions of Al7055 thick plate specimens prepared using two conditions, hot-rolling and solution-quenching, were performed. To examine the mechanical properties, uniaxial tensile tests were also carried out on specimens machined from both types of thick plates, using a layered strategy along the thickness direction. The results indicate that both the microstructure and mechanical properties are inhomogeneous under the two conditions. Furthermore, it is evident that there is a hereditary relationship between the mechanical properties of the two plates—areas with higher yield strength in the as-hot-rolled plate correspond to areas with the higher yield strength in the as-solution-quenched plate


Sign in / Sign up

Export Citation Format

Share Document