Contextual behavioural plasticity in Italian agile frog (Rana latastei) tadpoles exposed to native and alien predator cues

2021 ◽  
pp. jeb.240465
Author(s):  
Andrea Gazzola ◽  
Alessandro Balestrieri ◽  
Giovanni Scribano ◽  
Andrea Fontana ◽  
Daniele Pellitteri-Rosa

Predation is a strong driver for the evolution of prey behaviour. To properly assess the actual risk of predation, anuran tadpoles mostly rely on water-borne chemical cues, and their ability to evaluate environmental information is even more crucial when potential predators consist of unknown alien species. Behavioural plasticity, that is the capacity to express changes in behaviour in response to different environmental stimuli, is crucial to cope with predation risk. We explored the defensive behaviour of Italian agile frog (Rana latastei) tadpoles when exposed to the chemical cues of two predators’ species, one native (dragonfly larvae) and one alien (red swamp crayfish). Firstly, we observed if a sensible life history trait (i.e. hatching time) might be affected by native predatory cues. Secondly, we recorded a suite of behavioural responses (activity level, lateralization and sinuosity) to each cue. For assessing lateralization and sinuosity, we developed a C++ code for the automatic analysis of digitally recorded tadpole tracks. Hatching time seemed not to be affected by the potential risk of predation, while both predator species and diet affected tadpoles’ defensive behaviour. Tadpoles responded to predator threat by two main defensive strategies: freezing and “zig-zagging”. While the first behaviour had been previously reported, the analysis of individual trajectories pointed out that tadpoles can also increase path complexity, probably to prevent predators from anticipating their location. We also recorded a decrease in lateralization intensity, which suggested that under predation risk tadpoles tend to scrutinize the surrounding environment equally on both sides.

2015 ◽  
Vol 36 (2) ◽  
pp. 155-163 ◽  
Author(s):  
Ori Segev ◽  
Ariel Rodríguez ◽  
Susanne Hauswaldt ◽  
Karen Hugemann ◽  
Miguel Vences

Amphibians vary in the degree of pre-metamorphic developmental plasticity in response to risk of predation. Changes in hatching time and development rate can increase egg or tadpole survival respectively by shortening the duration of the more vulnerable stages. The intensity of predator induced developmental response and its direction, i.e. delayed, accelerated, or none, varies considerably between amphibian and predator species. We surveyed freshly deposited clutches of the European common frog Rana temporaria in a population in Braunschweig, Germany and found that 62% (N = 20) of the clutches contained planarians (Schmidtea nova), with an average of 3.94 ± 0.79 and a maximum of 13 planarians per clutch. A laboratory predation experiment confirmed that this planaria preys on R. temporaria eggs and early embryos. We further exposed freshly laid egg masses to either free, caged, or no planarians treatments using floating containers within a breeding pond where the two species co-occur. After 10 days exposure, embryos showed developmental stages 14-25 along the Gosner scale with statistically significant positive effects of both predator treatments. The observed effect was rather slight as predator-exposed individuals showed an increase by a single Gosner stage relative to those raised without planarians. The detected trend suggests that direct and indirect cues from flatworms, rarely considered as anuran predators, might induce a developmental response in R. temporaria early developmental stages.


ARCTIC ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 22-29
Author(s):  
Kevin G. Young ◽  
Lisa V. Kennedy ◽  
Paul A. Smith ◽  
Erica Nol

When monitoring the breeding ecology of birds, the causes and times of nest failure can be difficult to determine. Cameras placed near nests allow for accurate monitoring of nest fate, but their presence may increase the risk of predation by attracting predators, leading to biased results. The relative influence of cameras on nest predation risk may also depend on habitat because predator numbers or behaviour can change in response to the availability or accessibility of nests. We evaluated the impact of camera presence on the predation rate of artificial nests placed within mesic tundra habitats used by Arctic-breeding shorebirds. We deployed 94 artificial nests, half with cameras and half without, during the shorebird-nesting season of 2015 in the East Bay Migratory Bird Sanctuary, Nunavut. Artificial nests were distributed evenly across sedge meadow and supratidal habitats typically used by nesting shorebirds. We used the Cox proportional hazards model to assess differential nest survival in relation to camera presence, habitat type, placement date, and all potential interactions. Artificial nests with cameras did not experience higher predation risk than those without cameras. Predation risk of artificial nests was related to an interaction between habitat type and placement date. Nests deployed in sedge meadows and in supratidal habitats later in the season were subject to a higher risk of predation than those deployed in supratidal habitats early in the season. These differences in predation risk are likely driven by the foraging behaviour of Arctic fox (Vulpes lagopus), a species that accounted for 81% of observed predation events in this study. Arctic fox prey primarily on Arvicoline prey and goose eggs at this site and take shorebird nests opportunistically, perhaps more often later in the season when their preferred prey becomes scarcer. This study demonstrates that, at this site, cameras used for nest monitoring do not influence predation risk. Evaluating the impact of cameras on predation risk is critical prior to their use, as individual study areas may differ in terms of predator species and behaviour.


2013 ◽  
Vol 9 (4) ◽  
pp. 20130154 ◽  
Author(s):  
Cameron K. Ghalambor ◽  
Susana I. Peluc ◽  
Thomas E. Martin

Predation can be an important agent of natural selection shaping parental care behaviours, and can also favour behavioural plasticity. Parent birds often decrease the rate that they visit the nest to provision offspring when perceived risk is high. Yet, the plasticity of such responses may differ among species as a function of either their relative risk of predation, or the mean rate of provisioning. Here, we report parental provisioning responses to experimental increases in the perceived risk of predation. We tested responses of 10 species of bird in north temperate Arizona and subtropical Argentina that differed in their ambient risk of predation. All species decreased provisioning rates in response to the nest predator but not to a control. However, provisioning rates decreased more in species that had greater ambient risk of predation on natural nests. These results support theoretical predictions that the extent of plasticity of a trait that is sensitive to nest predation risk should vary among species in accordance with predation risk.


2015 ◽  
Vol 31 (3) ◽  
pp. 243-250 ◽  
Author(s):  
Vallo Tilgar ◽  
Kadri Moks

Abstract:Stressful environments have been suggested to enhance cooperative behaviours in animal communities. Prey animals living in risky environments can also increase long-term benefits by cooperating with neighbours, such as collectively harassing predators. However, empirical studies have rarely tested this prediction in the wild. In this experimental study we explored whether the perceived predation risk influences cooperative mobbing behaviour in tropical forest birds in French Guiana. The predation risk was increased by 5-d-long presentation of visual and acoustic stimuli of pygmy-owls in 24 locations. In order to examine whether mobbing response can vary in relation to the abundance of local predators, we used the Amazonian pygmy-owl (Glaucidium hardyi) as a common predator and the ferruginous pygmy-owl (Glaucidium brasilianum) as a rare predator in the study area. Our results showed that repeated predator-presentations increased mobbing response over time for the rarer owl species, while this effect was not significant for the common owl species. No effect of repeated presentations of either pygmy-owl species was found on the latency of mobbing. Moreover, mobbing latency was shorter and mobbing response was stronger for the common predator species, the Amazonian pygmy-owl. This study provides experimental evidence that birds exhibit stronger mobbing responses when the predator is locally abundant, while repeated encounters can be perceived as more dangerous when the predator is rare.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 293
Author(s):  
Selene S. C. Nogueira ◽  
Sérgio L. G. Nogueira-Filho ◽  
José M. B. Duarte ◽  
Michael Mendl

Within a species, some individuals are better able to cope with threatening environments than others. Paca (Cuniculus paca) appear resilient to over-hunting by humans, which may be related to the behavioural plasticity shown by this species. To investigate this, we submitted captive pacas to temperament tests designed to assess individual responses to short challenges and judgement bias tests (JBT) to evaluate individuals’ affective states. Results indicated across-time and context stability in closely correlated “agitated”, “fearful” and “tense” responses; this temperament dimension was labelled “restless”. Individual “restless” scores predicted responses to novelty, although not to simulated chasing and capture by humans in a separate modified defence test battery (MDTB). Restless animals were more likely to show a greater proportion of positive responses to an ambiguous cue during JBT after the MDTB. Plasticity in defensive behaviour was inferred from changes in behavioural responses and apparently rapid adaptation to challenge in the different phases of the MDTB. The results indicate that both temperament and behavioural plasticity may play a role in influencing paca responses to risky situations. Therefore, our study highlights the importance of understanding the role of individual temperament traits and behavioural plasticity in order to better interpret the animals’ conservation status and vulnerabilities.


Crustaceana ◽  
2015 ◽  
Vol 88 (7-8) ◽  
pp. 839-856 ◽  
Author(s):  
J. Hesse ◽  
J. A. Stanley ◽  
A. G. Jeffs

Kelp habitats are in decline in many temperate coastal regions of the world due to climate change and expansion of populations of grazing urchins. The loss of kelp habitat may influence the vulnerability to predators of the juveniles of commercially important species. In this study relative predation rates for kelp versus barren reef habitat were measured for early juvenile Australasian spiny lobster, Jasus edwardsii (Hutton, 1875), on the northeastern coast of New Zealand using tethering methods. Variation in assemblages of predators over small spatial scales appeared to be more important for determining the relative predation of lobsters, regardless of habitat type. Therefore, the assessment of relative predation risk to early juvenile lobsters between kelp and barren habitats will require more extensive sampling at a small spatial scale, as well as a specific focus on sampling during crepuscular and nocturnal periods when these lobsters are most at risk of predation.


2010 ◽  
Vol 37 (4) ◽  
pp. 273 ◽  
Author(s):  
Karen Fey ◽  
Peter B. Banks ◽  
Hannu Ylönen ◽  
Erkki Korpimäki

Context. Potential mammalian prey commonly use the odours of their co-evolved predators to manage their risks of predation. But when the risk comes from an unknown source of predation, odours might not be perceived as dangerous, and anti-predator responses may fail, except possibly if the alien predator is of the same archetype as a native predator. Aims. In the present study we examined anti-predator behavioural responses of voles from the outer archipelagos of the Baltic Sea, south-western Finland, where they have had no resident mammalian predators in recent history. Methods. We investigated responses of field voles (Microtus agrestis) to odours of native least weasels (Mustela nivalis) and a recently invading alien predator, the American mink (Mustela vison), in laboratory. We also studied the short-term responses of free-ranging field voles and bank voles (Myodes glareolus) to simulated predation risk by alien mink on small islands in the outer archipelago of the Baltic Sea. Key results. In the laboratory, voles avoided odour cues of native weasel but not of alien mink. It is possible that the response to mink is a context dependent learned response which could not be induced in the laboratory, whereas the response to weasel is innate. In the field, however, voles reduced activity during their normal peak-activity times at night as a response to simulated alien-mink predation risk. No other shifts in space use or activity in safer microhabitats or denser vegetation were apparent. Conclusions. Voles appeared to recognise alien minks as predators from their odours in the wild. However, reduction in activity is likely to be only a short-term immediate response to mink presence, which is augmented by longer-term strategies of habitat shift. Because alien mink still strongly suppresses vole dynamics despite these anti-predator responses, we suggest that behavioural naiveté may be the primary factor in the impact of an alien predator on native prey. Implications. Prey naiveté has long been considered as the root cause of the devastating impacts of alien predators, whereby native prey simply fail to recognise and respond to the novel predation risk. Our results reveal a more complex form of naiveté whereby native prey appeared to recognise alien predators as a threat but their response is ultimately inadequate. Thus, recognition alone is unlikely to afford protection for native prey from alien-predator impacts. Thus, management strategies that, for example, train prey in recognition of novel threats must induce effective responses if they are expected to succeed.


2018 ◽  
Vol 11 (1) ◽  
pp. 100-103
Author(s):  
Aldo Alvarez-Risco ◽  
Jaime Delgado-Zegarra ◽  
Jaime A. Yáñez ◽  
Santiago Diaz-Risco ◽  
Shyla Del-Aguila-Arcentales

Abstract The growth of tourism to Peru and the gastronomic boom with millions of people looking to taste Peruvian food is resulting in a risk of predation of natural sources necessary to make these dishes. The focus in only obtaining these ingredients can generate significant damage to the Peruvian biodiversity, so stakeholders need to develop strategies to avoid predation due to the gastronomic boom. Citizens and visitors need to play a role in protecting the natural resources and contributing to environmental sustainability.


2005 ◽  
Vol 83 (8) ◽  
pp. 1128-1133 ◽  
Author(s):  
S J McCauley

The relationship between habitat distribution, growth rate, and plasticity was examined in the larvae of three species of dragonfly in the genus Libellula L., 1758. Growth rates were compared under three conditions: in the absence of predation risk, in the presence of sunfish (Lepomis macrochirus Rafinesque, 1819; Pisciformes: Centrachidae), and in the presence of invertebrate predators. I assessed how the habitat distributions of the three species of dragonfly, specifically how commonly they occur with fish, were related to growth rates and to the level of growth plasticity under different levels of perceived predation risk. There was a negative relationship between growth rate and the frequency with which species coexist with sunfish. Growth-rate plasticity was limited and does not appear to be important in determining the ability of species to coexist with alternative top predator types. Only one species exhibited growth-rate plasticity, decreasing growth in response to the predator with which it most commonly coexists but not to the species which poses the greatest predation risk. A comparison of growth rates and activity levels in the presence and absence of these predators suggests that growth and activity level parallel each other in these species.


2021 ◽  
pp. 1-11
Author(s):  
Catherine Chuirazzi ◽  
Melissa Ocampo ◽  
Mizuki K. Takahashi

Abstract Diet quality and predation are two critical factors in determining the growth and development of organisms. Various anurans are susceptible to phenotypic changes influenced by these factors. Yet, few studies examined prey diet quality as potential influence over predator-induced traits. Using wood frog tadpoles (Lithobates sylvaticus) as a model species, we investigated the effects of three diet compositions (plant-based, animal-based, omnivorous) crossed with presence or absence of chemical cues from predatory dragonfly larvae (Aeshnidae). After 35 days, we recorded 11 morphological measurements, Gosner stage, and intestinal length of tadpoles to assess phenotypic changes under the six different experimental conditions. Our results showed the additive effects of both diet quality and predator chemical cue without detection of interactions between the two. Tadpoles receiving the omnivorous diet grew and developed faster with wider denticle rows than those receiving the plant or animal diets. The growth and development of tadpoles receiving only the animal diet were significantly hindered. These results emphasize the importance of diet quality in the growth and development of larval wood frogs. Chemical cues from predators significantly reduced tadpole body size but, in contrast to previous findings, did not affect tail size. Our experimental procedure of providing water containing predator and injured conspecific chemical cues on a weekly basis likely provided relatively weak predation risk perceived by tadpoles compared to previous studies using caged predators. The predator environment in our experiment, however, represents one ecologically relevant scenario in which predation risk is not urgent.


Sign in / Sign up

Export Citation Format

Share Document