An Experimental and Analytical Investigation of a Prototype Isolation System for an Explosive Gas Operated Device and Interaction Force Estimation

Author(s):  
H-J Kim

In this study, the optimal isolation system for the explosive gas operated device (EGOD) was investigated. Based on the analysis of the human body response induced by impulsive disturbances from the EGOD and the simplified human interaction model, a feasible isolation scheme has been presented and the prototype isolation system including the dynamic absorber has been constructed. In order to determine the parameters of that system, an optimization process was performed under constrained conditions. Finally, the performance of the designed prototype isolation system was evaluated in a series of experiments under actual utility condition, and the transmitted force from the EGOD to human body was predicted.

2021 ◽  
Author(s):  
Loris Roveda ◽  
Dario Piga

AbstractIndustrial robots are increasingly used to perform tasks requiring an interaction with the surrounding environment (e.g., assembly tasks). Such environments are usually (partially) unknown to the robot, requiring the implemented controllers to suitably react to the established interaction. Standard controllers require force/torque measurements to close the loop. However, most of the industrial manipulators do not have embedded force/torque sensor(s) and such integration results in additional costs and implementation effort. To extend the use of compliant controllers to sensorless interaction control, a model-based methodology is presented in this paper. Relying on sensorless Cartesian impedance control, two Extended Kalman Filters (EKF) are proposed: an EKF for interaction force estimation and an EKF for environment stiffness estimation. Exploiting such estimations, a control architecture is proposed to implement a sensorless force loop (exploiting the provided estimated force) with adaptive Cartesian impedance control and coupling dynamics compensation (exploiting the provided estimated environment stiffness). The described approach has been validated in both simulations and experiments. A Franka EMIKA panda robot has been used. A probing task involving different materials (i.e., with different - unknown - stiffness properties) has been considered to show the capabilities of the developed EKFs (able to converge with limited errors) and control tuning (preserving stability). Additionally, a polishing-like task and an assembly task have been implemented to show the achieved performance of the proposed methodology.


2004 ◽  
Vol 126 (2) ◽  
pp. 327-335 ◽  
Author(s):  
Nader Jalili ◽  
Mohsen Dadfarnia ◽  
Darren M. Dawson

The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of intermolecular forces with atomic-resolution characterization that can be employed in a broad spectrum of applications. The non-contact AFM offers unique advantages over other contemporary scanning probe techniques such as contact AFM and scanning tunneling microscopy, especially when utilized for reliable measurements of soft samples (e.g., biological species). Current AFM imaging techniques are often based on a lumped-parameters model and ordinary differential equation (ODE) representation of the micro-cantilevers coupled with an adhoc method for atomic interaction force estimation (especially in non-contact mode). Since the magnitude of the interaction force lies within the range of nano-Newtons to pica-Newtons, precise estimation of the atomic force is crucial for accurate topographical imaging. In contrast to the previously utilized lumped modeling methods, this paper aims at improving current AFM measurement technique through developing a general distributed-parameters base modeling approach that reveals greater insight into the fundamental characteristics of the microcantilever-sample interaction. For this, the governing equations of motion are derived in the global coordinates via the Hamilton’s Extended Principle. An interaction force identification scheme is then designed based on the original infinite dimensional distributed-parameters system which, in turn, reveals the unmeasurable distance between AFM tip and sample surface. Numerical simulations are provided to support these claims.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 558 ◽  
Author(s):  
Ashok Yadav ◽  
Vinod Kumar Singh ◽  
Akash Kumar Bhoi ◽  
Gonçalo Marques ◽  
Begonya Garcia-Zapirain ◽  
...  

A compact textile ultra-wideband (UWB) antenna with an electrical dimension of 0.24λo × 0.24λo × 0.009λo with microstrip line feed at lower edge and a frequency of operation of 2.96 GHz is proposed for UWB application. The analytical investigation using circuit theory concepts and the cavity model of the antenna is presented to validate the design. The main contribution of this paper is to propose a wearable antenna with wide impedance bandwidth of 118.68 % (2.96–11.6 GHz) applicable for UWB range of 3.1 to 10.6 GHz. The results present a maximum gain of 5.47 dBi at 7.3 GHz frequency. Moreover, this antenna exhibits Omni and quasi-Omni radiation patterns at various frequencies (4 GHz, 7 GHz and 10 GHz) for short-distance communication. The cutting notch and slot on the patch, and its effect on the antenna impedance to increase performance through current distribution is also presented. The time-domain characteristic of the proposed antenna is also discussed for the analysis of the pulse distortion phenomena. A constant group delay less than 1 ns is obtained over the entire operating impedance bandwidth (2.96–11.6 GHz) of the textile antenna in both situations, i.e., side by side and front to front. Linear phase consideration is also presented for both situations, as well as configurations of reception and transmission. An assessment of the effects of bending and humidity has been demonstrated by placing the antenna on the human body. The specific absorption rate (SAR) value was tested to show the radiation effect on the human body, and it was found that its impact on the human body SAR value is 1.68 W/kg, which indicates the safer limit to avoid radiation effects. Therefore, the proposed method is promising for telemedicine and mobile health systems.


2019 ◽  
Vol 4 (2) ◽  
pp. 1156-1161 ◽  
Author(s):  
Gijo Sebastian ◽  
Zeyu Li ◽  
Vincent Crocher ◽  
Demy Kremers ◽  
Ying Tan ◽  
...  

Author(s):  
Uma Jayaram ◽  
Hrishikesh Tirumali ◽  
Sankar Jayaram ◽  
Kevin Lyons

Abstract Current virtual assembly environments primarily allow assembly operations involving pick and place manipulations with hands. In some applications, assembly tools snap onto screws and are constrained. Some non-immersive systems create tool motion script models for the tool to execute the assembly operation. The inclusion of tools and realistic tool operations is a significant step in creating a better virtual assembly environment. We propose a technique to model hand held tools and the corresponding assembly operations in a virtual environment. Intermediate-location constraints and tool engagement constraints obtained from the CAD model are used to model the intermediate positions and engagements of a fastener tool, tool-part, and base-part. In addition, tool-based motion dependent on the rotation of the tool and the pitch of the thread has been achieved for a fastener part This allows us to simulate the physical reality of these interactions without using expensive collide, penetrate, correct, and align methods. The tools and tool/hand/part interactions have been modeled and tested in a virtual assembly and design environment successfully. This capability also allows tool accessibility and tool operability to be verified.


RSC Advances ◽  
2015 ◽  
Vol 5 (40) ◽  
pp. 31594-31605 ◽  
Author(s):  
Nazanin Davari ◽  
Shokouh Haghdani ◽  
Per-Olof Åstrand ◽  
George C. Schatz

A model for the local electric field as a linear response to a frequency-dependent external electric field is presented based on a combined charge-transfer and point–dipole interaction force-field model.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7253
Author(s):  
Xianyi Duan ◽  
Junqing Lan ◽  
Yinliang Diao ◽  
Jose Gomez-Tames ◽  
Hiroshi Hirayama ◽  
...  

Wireless power transfer (WPT) systems have attracted considerable attention in relation to providing a reliable and convenient power supply. Among the challenges in this area are maintaining the performance of the WPT system with the presence of a human body and minimizing the induced physical quantities in the human body. This study proposes a magnetic resonant coupling WPT (MRC-WPT) system that utilizes a resonator with a grounded loop to mitigate its interaction with a human body and achieve a high-efficiency power transfer at a short range. Our proposed system is based on a grounded loop to reduce the leakage of the electric field, resulting in less interaction with the human body. As a result, a transmission efficiency higher than 70% is achieved at a transmission distance of approximately 25 cm. Under the maximum-efficiency conditions of the WPT system, the use of a resonator with a grounded loop reduces the induced electric field, the peak spatial-average specific absorption rate (psSAR), and the whole-body averaged SAR by 43.6%, 69.7%, and 65.6%, respectively. The maximum permissible input power values for the proposed WPT systems are 40 and 33.5 kW, as prescribed in the International Commission of Non-Ionizing Radiation Protection (ICNIRP) guidelines to comply with the limits for local and whole-body average SAR.


Sign in / Sign up

Export Citation Format

Share Document