Part load operating strategies for gas turbines in district heating applications

Author(s):  
C Carcasci ◽  
N. A Colitto. Cormacchione
Author(s):  
Karl W. Karstensen ◽  
Jesse O. Wiggins

Gas turbines have been accepted in naval surface ship applications, and considerable effort has been made to improve their fuel consumption, particularly at part-load operation. This is an important parameter for shipboard engines because both propulsion and electrical-generator engines spend most of their lives operating at off-design power. An effective way to improve part-load efficiency of recuperated gas turbines is by using a variable power turbine nozzle. This paper discusses the successful use of variable power turbine nozzles in several applications in a family of engines developed for vehicular, industrial, and marine use. These engines incorporate a variable power turbine nozzle and primary surface recuperator to yield specific fuel consumption that rivals that of medium speed diesels. The paper concentrates on the experience with the variable nozzle, tracing its derivation from an existing fixed vane nozzle and its use across a wide range of engine sizes and applications. Emphasis is placed on its potential in marine propulsion and auxiliary gas turbines.


2021 ◽  
Author(s):  
Silvia Ravelli

Abstract This study takes inspiration from a previous work focused on the simulations of the Willem-Alexander Centrale (WAC) power plant located in Buggenum (the Netherlands), based on integrated gasification combined cycle (IGCC) technology, under both design and off-design conditions. These latter included co-gasification of coal and biomass, in proportions of 30:70, in three different fuel mixtures. Any drop in the energy content of the coal/biomass blend, with respect to 100% coal, translated into a reduction in gas turbine (GT) firing temperature and load, according to the guidelines of WAC testing. Since the model was found to be accurate in comparison with operational data, here attention is drawn to the GT behavior. Hence part load strategies, such as fuel-only turbine inlet temperature (TIT) control and inlet guide vane (IGV) control, were investigated with the aim of maximizing the net electric efficiency (ηel) of the whole plant. This was done for different GT models from leading manufactures on a comparable size, in the range between 190–200 MW. The influence of fuel quality on overall ηel was discussed for three binary blends, over a wide range of lower heating value (LHV), while ensuring a concentration of H2 in the syngas below the limit of 30 vol%. IGV control was found to deliver the highest IGCC ηel combined with the lowest CO2 emission intensity, when compared not only to TIT control but also to turbine exhaust temperature control, which matches the spec for the selected GT engine. Thermoflex® was used to compute mass and energy balances in a steady environment thus neglecting dynamic aspects.


Author(s):  
SS Talebi ◽  
AM Tousi ◽  
A Madadi ◽  
M Kiaee

Recently, the utilization of micro gas turbines in smart grids are rising that makes the part-load operation principal situation of the engine service. This leads to faster life consumption that increases the importance of the diagnostics process. Gas path analysis is an effective method for gas turbine diagnostics. Complex dynamics of gas turbine induces challenging conditions to perform applicable gas path analysis. This study aims to facilitate MGT gas path diagnostics through reducing the number of monitoring parameters and preparation a pattern for engine level and component level health assessment in both full and part load operation of a recuperated micro gas turbine. To attain this goal a model is proposed to simulate MGT off-design performance which is validated against experimental data in healthy and degraded operation modes. Fouling in compressor, turbine and recuperator and erosion in compressor and turbine as the most common degradations in the gas turbine are considered. The fault simulation is performed by changing the health parameters of gas path components. According to the result investigation, a matrix comprises deviation contours of four parameters, Power, fuel flow, compressor discharge pressure, and exhaust gas temperature is presented and analyzed. The analysis shows that monitoring these parameters makes it possible to perform engine level and component level diagnostics through evaluating a binary code (generated by mentioned parameter variations) against the fault effects pattern in different load fractions and fault severities. The simulation also showed that the most power drop occurred under the compressor fouling by about 8.7% while the most reduction in thermal efficiency is observed under recuperator fouling by about 7.84%. Furthermore, the investigation showed the maximum decrease in the surge margin induced by the compressor fouling during the lower part-load operation by about 45.7% while in the higher loads created by the turbine fouling by about 14%.


Author(s):  
H. Jericha ◽  
F. Neumayer

A conceptual design study for a 120 MW combined cycle plant is presented here. Values of 60% thermal efficiency are at present the realm of very large gas turbines of most advanced design with power outputs of 300 to 500 MW. For industry and district heating plants it would be of most economic value to achieve similar thermal efficiencies in medium size gas turbines and combined cycle plants as they are being installed in Central European cogeneration and district heating plants. The authors propose by concerted application of recent research results to achieve this goal for medium size combined cycle plants. Design measures incorporated are transonic turbine stages, an innovative cooling system and a 600 degree reheat steam turbine.


Author(s):  
Rolf H. Kehlhofer

In the past 15 years the combined-cycle (gas/steam turbine) power plant has come into its own in the power generation market. Today, approximately 30 000 MW of power are already installed or being built as combined-cycle units. Combined-cycle plants are therefore a proven technology, showing not only impressive thermal efficiency ratings of up to 50 percent in theory, but also proving them in practice and everyday operation (1) (2). Combined-cycle installations can be used for many purposes. They range from power plants for power generation only, to cogeneration plants for district heating or combined cycles with maximum additional firing (3). The main obstacle to further expansion of the combined cycle principle is its lack of fuel flexibility. To this day, gas turbines are still limited to gaseous or liquid fuels. This paper shows a viable way to add a cheap solid fuel, coal, to the list. The plant system in question is a 2 × 150 MW combined-cycle plant of BBC Brown Boveri with integrated coal gasification plant of British Gas/Lurgi. The main point of interest is that all the individual components of the power plant described in this paper have proven their worth commercially. It is therefore not a pilot plant but a viable commercial proposition.


Author(s):  
M. S. N. Murthy ◽  
Subhash Kumar ◽  
Sheshadri Sreedhara

Abstract A gas turbine engine (GT) is very complex to design and manufacture considering the power density it offers. Development of a GT is also iterative, expensive and involves a long lead time. The components of a GT, viz compressor, combustor and turbine are strongly dependent on each other for the overall performance characteristics of the GT. The range of compressor operation is dependent on the functional and safe limits of surging and choking. The turbine operating speeds are required to be matched with that of compressor for wide range of operating conditions. Due to this constrain, design for optimum possible performance is often sacrificed. Further, once catered for a design point, gas turbines offer low part load efficiencies at conditions away from design point. As a more efficient option, a GT is practically achievable in a split configuration, where the compressor and turbine rotate on different shafts independently. The compressor is driven by a variable speed electric motor. The power developed in the combustor using the compressed air from the compressor and fuel, drives the turbine. The turbine provides mechanical shaft power through a gear box if required. A drive taken from the shaft rotates an electricity generator, which provides power for the compressor’s variable speed electric motor through a power bank. Despite introducing, two additional power conversions compared to a conventional GT, this split configuration named as ‘Part Electric Gas Turbine’, has a potential for new applications and to achieve overall better efficiencies from a GT considering the poor part load characteristics of a conventional GT.


Author(s):  
Michel Moliere ◽  
Jean-Noël Jaubert ◽  
Romain Privat ◽  
Thierry Schuhler

As renewables are progressively displacing thermal plants in the power generation scene worldwide, the vocation of stationary Gas Turbines (GT) is deeply evolving. In this irreversible move GT plants are called upon to become cycling units with increasingly variable load profiles. This is dictated by the need to compensate for the fluctuations of renewable energy sources and secure the spinning reserve that is indispensable for the stability of the grids. This new scenario creates a serious challenge for gas turbine designers and operators in terms of investment policy, plant management and equipment lifetime. Indeed, operating a gas turbine at part, variable load requires reducing its firing temperature and possibly its air flow. While part load operation entails efficiency losses with respect to the full load mode, load variations cause maintenance penalties due the premature component ageing tied namely with thermal and low cycle fatigue effects on machine materials. As far as efficiency is concerned, an exergy analysis of a contemporary, air-based Brayton cycle is useful for quantifying and comparing the losses incurred by the various engine components. Such study reveals the high sensitivity of compressor efficiency to load decreases. Among possible counter-measures, heating the air at the compressor intake represents a simple mitigation measure, as it enables reducing the air flow rate while preserving to some extent the efficiency of the compressor and consequently GT efficiency.


Author(s):  
Panteleimon Kazatzis ◽  
Riti Singh ◽  
Pericles Pilidis ◽  
Jean-Jacques Locquet

The power-speed requirements of warships and the poor part load efficiency of simple cycle gas turbines has given rise to the design of many ship installations where two types of gas turbines are used. A large type for high speed, at full power, and a small one for cruise. It is common to mount two units of each type. This design results in a large amount of bulky and heavy ducting, much more voluminous and heavy than the gas turbines themselves. The present paper outlines an investigation into a novel intercooled split-cycle with some deck mounted components. This reduces the requirement for internal ducts in the ships hull, essentially, to those needed by the cruise engine. The engine performance has been predicted and a comparison is carried out between a traditional installation and the one investigated. An estimate has been carried out of the flow conditions of the duct to assess the change in losses for operation in the cruise and the full power condition. The new scheme appears to be promising.


Author(s):  
Cleverson Bringhenti ◽  
Joa˜o R. Barbosa

For distributed power generation, sometimes the available gas turbines cannot match the power demands. It has been usual to uprate an existing gas turbine in the lower power range by increasing the firing temperature and speeding it up. The development costs are high and the time to make it operational is large. In the other hand, de-rating an existing gas turbine in the upper power range may be more convenient since it is expected to cut significantly the time for development and costs. In addition, the experience achieved with this engine may be easily extrapolated to the new engine. This paper deals with the performance analysis of an existing gas turbine, in the range of 25 MW, de-rated to the range of 18 MW, concerning the compressor modifications that could be more easily implemented. Analysis is performed for the base engine, running at part-load of MW. A variable geometry compressor is derived from the existing one. Search for optimized performance is carried out for new firing temperatures. A variable geometry turbine analysis is performed for new NGV settings, aiming at better cycle performance.


Sign in / Sign up

Export Citation Format

Share Document