High STMN1 Expression is Associated with Cancer Progression and Chemo-Resistance in Lung Squamous Cell Carcinoma

2017 ◽  
Vol 24 (13) ◽  
pp. 4017-4024 ◽  
Author(s):  
Pinjie Bao ◽  
Takehiko Yokobori ◽  
Bolag Altan ◽  
Misaki Iijima ◽  
Youko Azuma ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kui Liu ◽  
Jing Ma ◽  
Jiao Ao ◽  
Lili Mu ◽  
Yixian Wang ◽  
...  

Chromatin-modifying enzymes, especially protein arginine methyltransferases (PRMTs), have been identified as candidate targets for cancer. Cellular or animal-based evidence has suggested an association between coactivator-linked arginine methyltransferase 1 (CARM1) and cancer progression. However, the relationship between CARM1 and patient prognosis and immune infiltration in pancancer patients is unknown. On the basis of the GEO and TCGA databases, we first investigated the possible oncogenic functions of CARM1 in thirty-three tumor types. CARM1 expression was elevated in many types of tumors. In addition, there was a significant association between CARM1 expression and the survival rate of tumor patients. Uterine corpus endometrial carcinoma (UCES) samples had the highest CARM1 mutation frequency of all cancer types. In head and neck squamous cell carcinoma (HNSC) and lung squamous cell carcinoma (LUSC), CARM1 expression was associated with the level of CD8+ T cell infiltration, and cancer-associated fibroblast infiltration was also observed in other tumors including kidney renal papillary cell carcinoma (KIRC) and prostate adenocarcinoma (PRAD). CARM1 was involved in immune modulation and played an important role in the tumor microenvironment (TME). Furthermore, activities associated with RNA transport and its metabolism were included in the possible mechanisms of CARM1. Herein, our first pancancer research explores the oncogenic role of CARM1 in various tumors. CARM1 is associated with immune infiltrates and can be employed as a predictive biomarker in pancancer.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jiangwei Hu ◽  
Xinqin Xiang ◽  
Wei Guan ◽  
Weihua Lou ◽  
Junming He ◽  
...  

Abstract Background So far, few have concerned miR-497-5p in lung squamous cell carcinoma (LUSC). Methods MiR-497-5p expression in LUSC was measured by qRT-PCR. Its impacts on tumor-related cell behaviors were investigated by CCK8 assay, scratch healing assay, flow cytometry and Transwell invasion methods. In addition, interaction between miR-497-5p and CDCA4 in LUSC was also elucidated through rescue experiment, western blot, dual-luciferase, and bioinformatics analysis. Results Low level of miR-497-5p was confirmed in LUSC tissue and cells. Overexpressed miR-497-5p markedly inhibited cancer progression. miR-497-5p restrained CDCA4 expression. Rescue assay showed that overexpressing miR-497-5p eliminated effect of overexpressed CDCA4. Conclusion By targeting CDCA4, miR-497-5p restrained development of LUSC.


Author(s):  
Zheng Dong ◽  
Qing-Hua Xu ◽  
Yuan-Bin Zhu ◽  
Yong-Feng Wang ◽  
Jie Xiong ◽  
...  

Aims : The present study explored the clinical significance of microRNA-22 (miR-22) expression in lung squamous cell carcinoma and to explore the targeting relationship with vascular endothelial growth factor receptor 3 (VEGFR3). Methods: A total of 49 patients with lung squamous cell carcinoma who underwent surgical treatment was selected. The expression of miR-22 was detected by fluorescence quantitative real-time PCR (qPCR), the expression of VEGFR3 was detected by Western blotting assays, and D240 labeled microlymphatic vessels density (MLVD) was detected immunohistochemistry (IHC). Lung squamous cell carcinoma cell line SK-MES-1 was selected and the targeting relationship between miR-22 and VEGFR3 was analyzed by double luciferase reporter gene assay. Western blotting assays were used to detect the expression of vascular endothelial growth factor-D (VEGF-D) and D240 in the blank control group, empty vector transfection group, miR-22 transfection group, miR-22 and VEGFR3 co-transfection group. Results: The expression range of miR-22 in lung squamous cell carcinoma was 0.8-3.5. The expression of miR-22 in lung squamous cell carcinoma was significantly different by tumor maximum diameter, lymph node metastasis, vascular invasion and TNM stage. The expression of miR-22 was linked to survival time. There was a negative correlation between miR-22 and VEGFR3, miR-22 and MLVD. Double luciferase reporter gene assays showed that miR-22 reduced the luciferase activity of pGL3-VEGFR3-WT transfected cells. Compared with the control group, the expression of VEGF-D and D2-40 in the miR-22 transfection group was significantly decreased. However, VEGF-D and D240 in the miR-22 and VEGFR3 cotransfection group reversed the changes. Conclusion: We assumed that the abnormal expression of miR-22 in lung squamous cell carcinoma may be involved in the development and progression of lung squamous cell carcinoma. MiR-22 negatively regulated the target gene VEGFR3 to mediate lymphangiogenesis. The expression of miR-22 may also be linked to the prognosis of the disease.


Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582092868 ◽  
Author(s):  
Qingjie Xian ◽  
Ronglei Zhao ◽  
Juanjuan Fu

Increasing evidence indicated that microRNAs served dominant roles in carcinogenesis and cancer progression by targeting potential downstream genes. In our study, we found that miR-527 was an upregulated expression in human esophageal squamous cell carcinoma (ESCC) cells and tissues. Furthermore, overexpression of miR-527 promoted cell proliferation and colony formation, enhanced anchorage-independent growth ability, and contributed to cell cycle. In addition, protein phosphatase 2 (PHLPP2) was identified as the direct downstream target gene of miR-527 and was confirmed by luciferase gene reporter assay. In summary, we concluded that miR-527 acted as an oncogenic microRNA in ESCC development by directly targeting PHLPP2 might be a novel therapeutic target for the treatment of ESCC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ling Mao ◽  
Xiaoweng Wu ◽  
Zhengpeng Gong ◽  
Ming Yu ◽  
Zhi Huang

Abstract Background/objective Accumulated evidence has demonstrated that aerobic glycolysis serves as a regulator of tumor cell growth, invasion, and angiogenesis. Herein, we explored the role of protein disulfide isomerase family 6 (PDIA6) in the aerobic glycolysis and the progression of oral squamous cell carcinoma (OSCC). Methods The expression pattern of PDIA6 in OSCC tissues was determined by qPCR and western blotting. Lentivirus and small interfering RNAs (siRNAs) were introduced into cells to upregulate and downregulate PDIA6 expression. CCK-8, flow cytometry, transwell, and xenotransplantation models were applied to detect cell proliferation, apoptosis, migration, invasion, and tumorigenesis, respectively. Results A high expression pattern of PDIA6 was observed in OSCC tissues, which was closely associated with lower overall survival and malignant clinical features in OSCC. Compared with the control group, overexpression of PDIA6 induced significant enhancements in cell growth, migration, invasiveness, and tumorigenesis and decreased cell apoptosis, while knockdown of PDIA6 caused opposite results. In addition, overexpression of PDIA6 increased glucose consumption, lactate production, and ATP level in OSCC cells. Conclusion This study demonstrated that PDIA6 expression was elevated in OSCC tissues, and overexpression of it promoted aerobic glycolysis and OSCC progression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qi-Fan Yang ◽  
Di Wu ◽  
Jian Wang ◽  
Li Ba ◽  
Chen Tian ◽  
...  

AbstractLung squamous cell carcinoma (LUSC) possesses a poor prognosis even for stages I–III resected patients. Reliable prognostic biomarkers that can stratify and predict clinical outcomes for stage I–III resected LUSC patients are urgently needed. Based on gene expression of LUSC tissue samples from five public datasets, consisting of 687 cases, we developed an immune-related prognostic model (IPM) according to immune genes from ImmPort database. Then, we comprehensively analyzed the immune microenvironment and mutation burden that are significantly associated with this model. According to the IPM, patients were stratified into high- and low-risk groups with markedly distinct survival benefits. We found that patients with high immune risk possessed a higher proportion of immunosuppressive cells such as macrophages M0, and presented higher expression of CD47, CD73, SIRPA, and TIM-3. Moreover, When further stratified based on the tumor mutation burden (TMB) and risk score, patients with high TMB and low immune risk had a remarkable prolonged overall survival compared to patients with low TMB and high immune risk. Finally, a nomogram combing the IPM with clinical factors was established to provide a more precise evaluation of prognosis. The proposed immune relevant model is a promising biomarker for predicting overall survival in stage I–III LUSC. Thus, it may shed light on identifying patient subset at high risk of adverse prognosis from an immunological perspective.


Sign in / Sign up

Export Citation Format

Share Document