A New Route to Carbon Film Coating by Anodic Electrodeposition from Ionic Liquid Containing Different Phenylsilane Derivatives

2020 ◽  
Vol 49 (11) ◽  
pp. 1349-1352
Author(s):  
Nana Hozuki ◽  
Hidetaka Takato ◽  
Shingo Maruyama ◽  
Michio Kondo ◽  
Kenjiro Fujimoto ◽  
...  
2008 ◽  
Vol 1138 ◽  
Author(s):  
Yasuharu Ohgoe ◽  
Haruki Matsuo ◽  
Kazuhiro Nonaka ◽  
Toshiyuki Yaguchi ◽  
Kazuya Kanasugi ◽  
...  

AbstractIn this study, we focus on effect of diamond-like carbon (DLC) coating on scaffold for tissue engineering. DLC film was deposited on segmented polyurethane (SPU) scaffold sheet which consists of micro SUP fibers. Structural and compositional effects of the DLC film coating were investigated on cell growth as an investigation of biological response. The surface composition, morphology, structures, and wettability of the DLC film coating was estimated by using X-ray photoelectron spectrometer (XPS), Scanning Electron Microscope (SEM), Ar-laser Raman spectrophotometer (Raman), and contact angle measurement. And then, human umbilical vein endothelial (HUV-EC-C) cells were grown on the DLC coated scaffold sheet. The results presented here suggest that DLC film coating is promising approach to improve biological for tissue engineering.


Shinku ◽  
1989 ◽  
Vol 32 (3) ◽  
pp. 349-352
Author(s):  
Mikio KOBAYAKAWA ◽  
Seita TANEMURA ◽  
Hiroaki NIWA ◽  
Kazuo SAITOH ◽  
Masami IKEYAMA

Author(s):  
Nana Hozuki ◽  
Kenichi Kaminaga ◽  
Shingo Maruyama ◽  
Daisuke Shiga ◽  
Hiroshi Kumigashira ◽  
...  

Abstract Ta ions-containing solutions, which are brown in color with no precipitation, were successfully prepared through an electroelution process with ionic liquid (IL). An as-delivered Ta metal plate covered with a passivation oxide film could be easily eluted even at room temperature by simply applying an anodic potential of, e.g. +2.2 V vs. Ag in [Bmim][PF6] IL. According to the quantity of electric charge required for oxidation of Ta, most Ta ions in the IL were suggested to be in an oxidation state of +5, which was also confirmed by x-ray photoemission spectroscopy (XPS). Ta ions in IL were found to thermally evaporate together with IL molecules by heating in a vacuum, forming a deposit of the Ta ions-containing IL on a substrate. The Ta concentrations in the deposits were reduced uniquely by about one order of magnitude from those in the original bulk source through the evaporation process under the present conditions. Furthermore, a possibility of the formation of thin film-like Ta oxide from such a Ta ions-containing IL deposit and its bulk droplet prepared on substrates by annealing in air at 1000oC will be discussed.


2001 ◽  
Vol 685 ◽  
Author(s):  
Anatoli A. Evtukh ◽  
Volodimir G. Litovchenko ◽  
Yurii M. Litvin ◽  
Dmitrii V. Fedin ◽  
Yurii V. Rassamakin ◽  
...  

AbstractThe main requirements to electron field emission cathodes are their efficiency, stability and uniformity. In this work we combined the properties of porous silicon layers and diamond-like carbon (DLC) film to obtain emission cathodes with improved parameters. The layered structures of porous silicon and DLC film were formed both on flat n-Si surface and silicon tips created by chemical etching. The conditions of the anodic and stain etching of silicon in HF containing solution under the illumination have been widely changed. The influence of thin (≤10nm) DLC film coating of the porous silicon layer on electron emission has been investigated. The parameters of emission efficiency such as field enhancement coefficient, effective emission areas and threshold voltages have been estimated from current-voltage dependencies to compare and characterize different layered structures. The improvement of the emission efficiency of silicon tip arrays with porous layers coated with thin DLC film has been observed. These silicon-based structures are promising for flat panel display applications.


2006 ◽  
Vol 956 ◽  
Author(s):  
Kazuya Kanasugi ◽  
Yasuharu Ohgoe ◽  
Katsuya Tsuchimoto ◽  
Keisuke Sato ◽  
Kenji K. Hirakuri ◽  
...  

ABSTRACTDiamond-like carbon (DLC) film was deposited uniformly on an irregular structure such as a polyurethane artificial heart blood pump using a special 3-dimensional type electrode. Process of applying the DLC film coating is accomplished by inserting a large number of small metallic balls (φ0.8 mm chromium balls). It is then possible to adjust the shape of the electrode in such a way that the DLC film coating can be applied to the irregular surface of the artificial heart. In investigating the availability of the electrode, under helium (He) plasma, the plasma states were measured using double probe analysis. Lateral profiles of the electron temperature were higher in the centre and decreased towards the edges of the electrode. On the other hand, the plasma density profiles were lower in the centre part than at the edges. The electrode kept ion sheath on the artificial heart blood pump's surface at self-bias voltage uniformly. The results were that the DLC film was deposited completely on the artificial heart blood pump at the film thickness of approximately 350 - 380 nm. Additionally the film structure was uniform.


2008 ◽  
Vol 184 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Jui-Hsiang Lin ◽  
Wei-Hung Chen ◽  
Shih-Hsuan Su ◽  
Yuan-Kai Liao ◽  
Tse-Hao Ko

Sign in / Sign up

Export Citation Format

Share Document